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ABSTRACT

In this paper we propose WaveGlow: a flow-based net-
work capable of generating high quality speech from mel-
spectrograms. WaveGlow combines insights from Glow [1]
and WaveNet [2] in order to provide fast, efficient and high-
quality audio synthesis, without the need for auto-regression.
WaveGlow is implemented using only a single network,
trained using only a single cost function: maximizing the
likelihood of the training data, which makes the training
procedure simple and stable. Our PyTorch implementation
produces audio samples at a rate of more than 500 kHz on
an NVIDIA V100 GPU. Mean Opinion Scores show that it
delivers audio quality as good as the best publicly available
WaveNet implementation. All code will be made publicly
available online [3].

Index Terms— Audio Synthesis, Text-to-speech, Gener-
ative models, Deep Learning

1. INTRODUCTION

As voice interactions with machines become increasingly
useful, efficiently synthesizing high quality speech becomes
increasingly important. Small changes in voice quality or
latency have large impacts on customer experience and cus-
tomer preferences. However, high quality, real-time speech
synthesis remains a challenging task. Speech synthesis re-
quires generating very high dimensional samples with strong
long term dependencies. Additionally, humans are sensi-
tive to statistical imperfections in audio samples. Beyond the
quality challenges, real-time speech synthesis has challenging
speed and computation constraints. Perceived speech quality
drops significantly when the audio sampling rate is less than
16kHz, and higher sampling rates generate even higher qual-
ity speech. Furthermore, many applications require synthesis
rates much faster than 16kHz. For example, when synthesiz-
ing speech on remote servers, strict interactivity requirements
mean the utterances must be synthesized quickly at sample
rates far exceeding real-time requirements.

Currently, state of the art speech synthesis models are
based on parametric neural networks. Text-to-speech synthe-
sis is typically done in two steps. The first step transforms the
text into time-aligned features, such as a mel-spectrogram [4,
5], or F0 frequencies and other linguistic features [2, 6]. A

second model transforms these time-aligned features into au-
dio samples. This second model, sometimes referred to as a
vocoder, is computationally challenging and affects quality as
well. We focus on this second model in this work. Most of the
neural network based models for speech synthesis are auto-
regressive, meaning that they condition future audio samples
on previous samples in order to model long term dependen-
cies. These approaches are relatively simple to implement
and train. However, they are inherently serial, and hence can’t
fully utilize parallel processors like GPUs or TPUs. Models
in this group often have difficulty synthesizing audio faster
than 16kHz without sacrificing quality.

At this time we know of three neural network based mod-
els that can synthesize speech without auto-regression: Par-
allel WaveNet [2], Clarinet [7], and MCNN for spectrogram
inversion [8]. These techniques can synthesize audio at more
than 500kHz on a GPU. However, these models are more dif-
ficult to train and implement than the auto-regressive models.
All three require compound loss functions to improve audio
quality or problems with mode collapse [9, 7, 8]. In addi-
tion, Parallel WaveNet and Clarinet require two networks, a
student network and teacher network. The student networks
underlying both Parallel WaveNet and Clarinet use Inverse
Auto-regressive Flows (IAF) [10]. Though the IAF networks
can be run in parallel at inference time, the auto-regressive
nature of the flow itself makes calculation of the IAF ineffi-
cient. To overcome this, these works use a teacher network
to train a student network on a approximation to the true like-
lihood. These approaches are hard to reproduce and deploy
because of the difficulty of training these models successfully
to convergence.

In this work, we show that an auto-regressive flow is un-
necessary for synthesizing speech. Our contribution is a flow-
based network capable of generating high quality speech from
mel-spectrograms. We refer to this network as WaveGlow, as
it combines ideas from Glow [1] and WaveNet [2]. Wave-
Glow is simple to implement and train, using only a single
network, trained using only the likelihood loss function. De-
spite the simplicity of the model, our PyTorch implementa-
tion synthesizes speech at more than 500kHz on an NVIDIA
V100 GPU: more than 25 times faster than real time. Mean
Opinion Scores show that it delivers audio quality as good as
the best publicly available WaveNet implementation trained
on the same dataset.
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2. WAVEGLOW

WaveGlow is a generative model that generates audio by sam-
pling from a distribution. To use a neural network as a genera-
tive model, we take samples from a simple distribution, in our
case, a zero mean spherical Gaussian with the same number
of dimensions as our desired output, and put those samples
through a series of layers that transforms the simple distribu-
tion to one which has the desired distribution. In this case,
we model the distribution of audio samples conditioned on a
mel-spectrogram.

z ∼ N (z; 0, I) (1)
x = f0 ◦ f1 ◦ . . .fk(z) (2)

We would like to train this model by directly minimiz-
ing the negative log-likelihood of the data. If we use an ar-
bitrary neural network this is intractable. Flow-based net-
works [11, 12, 1] solve this problem by ensuring the neural
network mapping is invertible. By restricting each layer to
be bijective, the likelihood can be calculated directly using a
change of variables:

log pθ(x) = log pθ(z) +

k∑
i=1

log |det(J(f−1
i (x)))| (3)

z = f−1
k ◦ f

−1
k−1 ◦ . . .f

−1
0 (x) (4)

In our case, the first term is the log-likelihood of the spher-
ical Gaussian. This term penalizes the l2 norm of the trans-
formed sample. The second term arises from the change of
variables, and the J is the Jacobian. The log-determinant of
the Jacobian rewards any layer for increasing the volume of
the space during the forward pass. This term also keeps a
layer from just multiplying the x terms by zero to optimize
the l2 norm. The sequence of transformations is also referred
to as a normalizing flow [13].

Our model is most similar to the recent Glow work [1],
and is depicted in figure 1. For the forward pass through the
network, we take groups of 8 audio samples as vectors, which
we call the ”squeeze” operation, as in [1]. We then process
these vectors through several ”steps of flow”. A step of flow
here consists of an invertible 1 × 1 convolution followed by
an affine coupling layer, described below.

2.1. Affine Coupling Layer

Invertible neural networks are typically constructed using
coupling layers [11, 12, 1]. In our case, we use an affine cou-
pling layer [12]. Half of the channels serve as inputs, which
then produce multiplicative and additive terms that are used
to scale and translate the remaining channels:
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Fig. 1: WaveGlow network

xa,xb = split(x) (5)
(log s, t) =WN(xa,mel -spectrogram) (6)

xb′ = s� xb + t (7)

f−1
coupling(x) = concat(xa,xb′) (8)

Here WN() can be any transformation. The coupling
layer preserves invertibility for the overall network, even
though WN() does not need to be invertible. This follows
because the channels used as the inputs to WN(), in this case
xa, are passed through unchanged to the output of the layer.
Accordingly, when inverting the network, we can compute s
and t from the output xa, and then invert xb′ to compute xb,
by simply recomputing WN(xa,mel -spectrogram). In our
case, WN() uses layers of dilated convolutions with gated-
tanh nonlinearities, as well as residual connections and skip
connections. This WN architecture is similar to WaveNet [2]
and Parallel WaveNet [9], but our convolutions have 3 taps
and are not causal. The affine coupling layer is also where we
include the mel-spectrogram in order to condition the gen-
erated result on the input. The upsampled mel-spectrograms
are added before the gated-tanh nonlinearites of each layer
as in WaveNet [2].

With an affine coupling layer, only the s term changes the
volume of the mapping and adds a change of variables term
to the loss. This term also serves to penalize the model for
non-invertible affine mappings.

log |det(J(f−1
coupling(x)))| = log |s| (9)

2.2. 1x1 Invertible Convolution

In the affine coupling layer, channels in the same half never
directly modify one another. Without mixing information
across channels, this would be a severe restriction. Following
Glow [1], we mix information across channels by adding an
invertible 1x1 convolution layer before each affine coupling
layer. The W weights of these convolutions are initialized
to be orthonormal and hence invertible. The log-determinant
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of the Jacobian of this transformation joins the loss function
due to the change of variables, and also serves to keep these
convolutions invertible as the network is trained.

f−1
conv = Wx (10)

log |det(J(f−1
conv(x)))| = log |detW | (11)

After adding all the terms from the coupling layers, the
final likelihood becomes:

log pθ(x) =−
z(x)Tz(x)

2σ2

+

#coupling∑
j=0

log sj(x,mel -spectrogram)

+

#conv∑
k=0

log det |W k|

(12)

Where the first term comes from the log-likelihood of a
spherical Gaussian. The σ2 term is the assumed variance of
the Gaussian distribution, and the remaining terms account
for the change of variables.

2.3. Early outputs

Rather than having all channels go through all the layers, we
found it useful to output 2 of the channels to the loss func-
tion after every 4 coupling layers. After going through all
the layers of the network, the final vectors are concatenated
with all of the previously output channels to make the final
z. Outputting some dimensions early makes it easier for the
network to add information at multiple time scales, and helps
gradients propagate to earlier layers, much like skip connec-
tions. This approach is similar to the multi-scale architecture
used in [1, 12], though we do not add additional squeeze op-
erations, so vectors get shorter throughout the network.

2.4. Inference

Once the network is trained, doing inference is simply a mat-
ter of randomly sampling z values from a Gaussian and run-
ning them through the network. As suggested in [1], and
earlier work on likelihood-based generative models [14], we
found that sampling zs from a Gaussian with a lower stan-
dard deviation from that assumed during training resulted in
slightxly quality higher audio. During training we used σ =√
0.5, and during inference we sampled zs from a Gaussian

with standard deviation 0.6. Inverting the 1x1 convolutions is
just a matter of inverting the weight matrices. The inverse is
guaranteed by the loss. The mel-spectrograms are included at
each of the coupling layers as before, but now the affine trans-
forms are inverted, and these inverses are also guaranteed by
the loss.

xa =
xa′ − t

s
(13)

3. EXPERIMENTS

For all the experiments we trained on the LJ speech data [15].
This data set consists of 13,100 short audio clips of a sin-
gle speaker reading passages from 7 non-fiction books. The
data consists of roughly 24 hours of speech data recorded on
a MacBook Pro using its built-in microphone in a home envi-
ronment. We use a sampling rate of 22,050kHz.

We use the mel-spectrogram of the original audio as the
input to the WaveNet and WaveGlow networks. For WaveG-
low, we use mel-spectrograms with 80 bins using librosa mel
filter defaults, i.e. each bin is normalized by the filter length
and the scale is the same as HTK. The parameters of the mel-
spectrograms are FFT size 1024, hop size 256, and window
size 1024.

3.1. Griffin-Lim

As baseline for mean opinion score we compare the popu-
lar Griffin-Lim algorithm [16]. Griffin-Lim takes the entire
spectrogram (rather than the reduced mel-spectrogram) and
iteratively estimates the missing phase information by repeat-
edly converting between frequency and time domain. For our
experiments we use 60 iterations from frequency to time do-
main.

3.2. WaveNet

We compare against the popular open source WaveNet im-
plementation [17]. The network has 24 layers, 4 dilation
doubling cycles, and uses 512/512/256, for number of resid-
ual, gating, and skip channels respectively. The network
upsamples the mel-spectrogram to full time resolution using
4 separate upsampling layers. The network was trained for
1× 106 iterations using the Adam optimizer [18]. The mel-
spectrogram for this network is still 80 dimensions but was
processed slightly differently from the mel-spectrogram we
used in the WaveGlow network. Qualitatively, we did not
find these differences had an audible effect when changed in
the WaveGlow network. The full list of hyperparameters is
available online.

3.3. WaveGlow

The WaveGlow network we use has 12 coupling layers and
12 invertible 1x1 convolutions. The coupling layer networks
(WN ) each have 8 layers of dilated convolutions as described
in Section 2, with 512 channels used as residual connections
and 256 channels in the skip connections. We also output 2
of the channels after every 4 coupling layers. The WaveG-
low network was trained on 8 Nvidia GV100 GPU’s using
randomly chosen clips of 16,000 samples for 580,000 iter-
ations using weight normalization [19] and the Adam opti-
mizer [18], with a batch size of 24 and a step size of 1×10−4
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When training appeared to plateau, the learning rate was fur-
ther reduced to 5× 10−5.

3.4. Audio quality comparison

We crowd-sourced Mean Opinion Score (MOS) tests on Ama-
zon Mechanical Turk. Raters first had to pass a hearing test
to be eligible. Then they listened to an utterance, after which
they rated pleasantness on a five-point scale. We used 40 vol-
ume normalized utterances disjoint from the training set for
evaluation, and randomly chose the utterances for each sub-
ject. After completing the rating, each rater was excluded
from further tests to avoid anchoring effects.

The MOS scores are shown in Table 1 with 95% confi-
dence intervals. Though MOS scores of synthesized samples
are close on an absolute scale, none of the methods reach
the MOS score of real audio. Though WaveGlow has the
highest MOS, all the methods have similar scores with only
weakly significant differences after collecting approximately
1,000 samples. This roughly matches our subjective qualita-
tive assessment. Samples of the test utterances can be found
online [3]. The larger advantage of WaveGlow is in training
simplicity and inference speed.

Model Mean Opinion Score (MOS)
Griffin-Lim 3.823± 0.1349
WaveNet 3.885± 0.1238
WaveGlow 3.961± 0.1343
Ground Truth 4.274± 0.1340

Table 1: Mean Opinion Scores

3.5. Speed of inference comparison

Our implementation of Griffin-Lim can synthesize speech at
507kHz for 60 iterations of the algorithm. Note that Griffin-
Lim requires the full spectrogram rather than the reduced
mel-spectrogram like the other vocoders in this comparison.
The inference implementation of the WaveNet we compare
against synthesizes speech at 0.11kHz, significantly slower
than the real time.

Our unoptimized PyTorch implementation of WaveGlow
synthesizes a 10 second utterance at approximately 520kHz
on an NVIDIA V100 GPU. This is slightly faster than the
500kHz reported by Parallel WaveNet [9], although they
tested on an older GPU. For shorter utterances, the speed per
sample goes down because we have the same number of serial
steps, but less audio produced. Similar effects should be seen
for Griffin-Lim and Parallel WaveNet. This speed could be
increased with further optimization. Based on the arithmetic
cost of computing WaveGlow, we estimate that the upper
bound of a fully optimized implementation is approximately
2,000kHz on an Nvidia GV100.

4. DISCUSSION

Existing neural network based approaches to speech synthesis
fall into two groups. The first group conditions future audio
samples on previous samples in order to model long term de-
pendencies. The first of these auto-regressive neural network
models was WaveNet [2] which produced high quality audio.
However, WaveNet inference is challenging computationally.
Since then, several auto-regressive models have attempted to
speed up inference while retaining quality [6, 20, 21]. As of
this writing, the fastest auto-regressive network is [22], which
uses a variety of techniques to speed up an auto-regressive
RNN. Using customized GPU kernels, [22] was able to pro-
duce audio at 240kHz on an Nvidia P100 GPU, making it the
fastest auto-regressive model.

In the second group, Parallel WaveNet [9] and ClariNet [7]
are discussed in Section 1. MCNN for spectrogram inver-
sion [8] produces audio using one multi-headed convolutional
network. This network is capable of producing samples at
over 5,000kHz, but their training procedure is complicated
due to four hand-engineered losses, and it operates on the full
spectrogram rather than a reduced mel-spectrogram or other
features. It is not clear how a non-generative approach like
MCNN would generate realistic audio from a more under-
specified representation like mel-spectrograms or linguistic
features without some kind of additional sampling procedure
to add information.

Flow-based models give us a tractable likelihood for a
wide variety of generative modeling problems, by constrain-
ing the network to be invertible. We take the flow-based
approach of [1] and include the architectural insights of
WaveNet. Parallel WaveNet and ClariNet use flow-based
models as well. The inverse auto-regressive flows used in
Parallel WaveNet [9] and ClariNet [7] are capable of cap-
turing strong long-term dependencies in one individual pass.
This is likely why Parallel WaveNet was structured with only
4 passes through the IAF, as opposed to the 12 steps of flow
used by WaveGlow. However, the resulting complexity of
two networks and corresponding mode-collapse issues may
not be worth it for all users.

WaveGlow networks enable efficient speech synthesis
with a simple model that is easy to train. We believe that this
will help in the deployment of high quality audio synthesis.
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