
TTS Synthesis with Bidirectional LSTM based
Recurrent Neural Networks

Yuchen Fan 1,2*, Yao Qian2, Fenglong Xie2, Frank K. Soong2

1 Shanghai Jiao Tong University, Shanghai, China
2 Microsoft Research Asia, Beijing, China

fyc0624@sjtu.edu.cn, {yaoqian, v-fxie, frankkps}@microsoft.com

Abstract
Feed-forward, Deep neural networks (DNN)-based text-to-
speech (TTS) systems have been recently shown to outperform
decision-tree clustered context-dependent HMM TTS systems
[1, 4]. However, the long time span contextual effect in a
speech utterance is still not easy to accommodate, due to the
intrinsic, feed-forward nature in DNN-based modeling. Also,
to synthesize a smooth speech trajectory, the dynamic features
are commonly used to constrain speech parameter trajectory
generation in HMM-based TTS [2]. In this paper, Recurrent
Neural Networks (RNNs) with Bidirectional Long Short Term
Memory (BLSTM) cells are adopted to capture the correlation
or co-occurrence information between any two instants in a
speech utterance for parametric TTS synthesis. Experimental
results show that a hybrid system of DNN and BLSTM-RNN,
i.e., lower hidden layers with a feed-forward structure which is
cascaded with upper hidden layers with a bidirectional RNN
structure of LSTM, can outperform either the conventional,
decision tree-based HMM, or a DNN TTS system, both
objectively and subjectively. The speech trajectory generated
by the BLSTM-RNN TTS is fairly smooth and no dynamic
constraints are needed.
Index Terms: statistical parametric speech synthesis; hidden
Markov model; deep neural network; recurrent neural network;
Bidirectional LSTM

1. Introduction
Statistical Parametric TTS Synthesis system has many
advantages, e.g. the flexibility to change the voice
characteristics, small footprint, and robustness, over other
systems [1]. The above mentioned advantages have made the
parametric, GMM-HMM based TTS synthesis the main stream
technology for many, particularly hand-held device, speech
synthesis applications [2]. A parametric HMM is effective to
model the evolution of speech signals as a stochastic sequence
of acoustic feature vectors. Many techniques have been
developed for HMM-based speech recognition, e.g. context-
dependent modeling, state-tying based on decision tree
clustering, and speaker adaptation. They have been applied
equally well to HMM-based TTS for speech parameter
trajectory generation. The trajectory thus generated with
trained HMMs is fairly smooth and very rarely results in
concatenation glitches, which occur occasionally in unit-
selection synthesis. However, the overly smoothed parameter
trajectories, due to statistical average in HMM training, still
tend to make synthesized speech sound not as lively as
desired.

Recently, motivated by the success of DNN in speech

recognition, a few DNN research attempts have been tried in
order to improve the performance of vocoder-based speech
synthesis. Zen, et al. [3,23] comprehensively listed the
limitations of the conventional HMM-based approach, e.g.
decision-tree based contextual state clustering, and proposed
to use DNN to overcome these limitations for speech
synthesis. It shows DNN based approach, which models the
relationship between input texts and their corresponding
acoustic features, can outperform the HMM-based approach
with a similar number of model parameters. Qian, et al. [4]
further examined the DNN based TTS synthesis with a
moderate size corpus more commonly used for parametric
TTS training, on the training aspects, e.g., activation functions
and weights initialization in “pre-training”. Lu, et al. [5]
employed phone, letter and Vector Space Model (VSM) based
binary or continuous features as input features, and frame or
state for output predictions in DNN based synthesis. Deep
Belief Network (DBN) with stacked, restricted Boltzmann
machines (RBMs), which can model the structure in the input
data as generative “pre-training” and find a region of the

weight-space that can reduce over-fitting for the discriminative
“fine-tuning” phase in speech recognition [6], is also
employed to model joint distribution of linguistic and acoustic
features for speech synthesis [7]. In addition, RBM is directly
used to represent the distribution of the spectral envelops at
each HMM state in [8], where the mode of RBM has been
shown to perform better than the mean of GMM and results in
better synthesized voice quality.

In DNN-based speech synthesis, DNN simulates human
speech production by a layered hierarchical structure to
transform linguistic text information into its final speech
output. The limitation of decision-tree based contextual state
clustering, which is used to tie states of long contexts into
generalized ones to predict unseen contexts in testing better
than the HMM-based counterpart, is overcome in DNN. DNN
also can represent high dimensional and correlated features
efficiently and model highly complex mapping function
compactly. However, DNN is still suffering from using short
unit, e.g., state or frame, as basic modelling unit. To capture
co-articulation effect and mimic natural intonation, very rich
contexts are used as input features. To synthesize smooth
speech speech parameter trajectories, the dynamic model
parameters are required to be used together with their static
counterparts to generate smooth parameter trajectories [2].

In this paper, we investigate how to use Recurrent Neural
Networks (RNN), especially with bidirectional Long Short
Term Memory (LSTM) cells [9-13], which in principle can
capture information from anywhere in the feature sequence, as
a generation model for TTS synthesis. RNN can be unfolded
into a wide structure in time scale by taking the previous or
following hidden states. Like DNN, RNN can also be stacked
together in multiple layers and to have deep structure in space. *Work performed as an intern in the Speech Group, Microsoft

Research Asia

Copyright © 2014 ISCA 14-18 September 2014, Singapore

INTERSPEECH 2014

1964

� = (��, ⋯ , ��) , for a given input vector sequence 	 =
(
�, ⋯ ,
�) , iterating the following equations from � =
1 to �:

ℎ
 = ℋ(���

 + ���ℎ
�� + ��) (1)
�
 = ���ℎ
 + �� (2)

where � is the weight matrices, e.g. ��� is the weight matrix
between input and hidden vectors; � is the bias vectors, e.g. ��
is the bias vector for hidden state vectors; and ℋ is the
nonlinear activation function for hidden nodes.

ℋ is usually a sigmoid or hyperbolic tangent function in
the conventional RNNs, but the gradient vanishing problem
caused by these activation function prevents RNN from
modeling the long-span relations in sequential features. Long
short term memory (LSTM) network [11], shown in Fig. 1,
which manually build a memory cell inside, can overcome the
problems in conventional RNN and can model signals that
have a mixture of low and high frequency components. For
LSTM, ℋ is implemented with the following functions [12]:

�
 = �(���

 + ���ℎ
�� + ����
�� + ��) (3)
�
 = �����

 + ���ℎ
�� + ����
�� + ��� (4)
c
 = �
�
�� + �
���ℎ(���

 + �!"ℎ
�� + �") (5)
#
 = �(��$

 + ��$ℎ
�� + ��$�
 + �$) (6)
h
 = o
���ℎ(c
) (7)

where � is the sigmoid function; �, �, # and � are input gate,
forget gate, output gate and cell memory, respectively.

it ft ot

ct

xt xt xt xt

ht

Input gate Forget gate Output gate

Cell

Fig.1. Long Short Term Memory

Bidirectional RNN [13] as shown in Fig. 2 can access both
the preceeding and succeeding contexts. It separates the
hidden layer into two parts, forward state sequence, ℎ%⃗ , and
backward state sequence, ℎ⃖%. The iterative process is:

ℎ%⃗
 = ℋ����%%⃗

 + ��%%⃗ �%%⃗ ℎ%⃗
�� + ��%%⃗ � (8)

ℎ⃖%
 = ℋ����⃖%%

 + ��⃖%%�⃖%%ℎ⃖%
*� + ��⃖%%� (9)

�
 = ��%%⃗ �ℎ%⃗
 + ��⃖%%�ℎ⃖%
 + �� (10)

Deep bidirectional RNN can be established by stacking
multiple RNN hidden layers on top of each other. Each hidden
state sequence, ℎ-, is replaced by the forward and backward,
ℎ%⃗ - and ℎ⃖%-, and the iterative process is:

ℎ%⃗

- = ℋ���%%⃗ ./0�%%⃗ .ℎ%⃗

-�� + ��%%⃗ .�%%⃗ .ℎ%⃗
��
- + ��%%⃗

-� (11)

ℎ⃖%

- = ℋ���⃖%%./0�⃖%%.ℎ⃖%

-�� + ��⃖%%.�⃖%%.ℎ⃖%
*�
- + ��⃖%%

-� (12)

�
 = ��%%⃗ 2�ℎ%⃗

3 + ��⃖%%2�ℎ⃖%

3 + �� (13)

Deep bidirectional LSTM (DBLSTM) is the integration of
deep bidirectional RNN and LSTM. By taking the advantages
of DNN and LSTM, it can model the deep representation of
long-span features.

Backward Layer

Forward Layer

Input

Output

Fig.2. Bidirectional RNN

3. DBLSTM-RNN based TTS Synthesis
Speech production can be seen as a process to select spoken
words, formulate their phonetics and then finally articulate
output speech with the articulators. So it is a continuous
physical dynamic process. DBLSTM-RNN can simulate
human speech production by a layered hierarchical and wide
in time scale structure to transform linguistic text information
into its final speech output. In a TTS synthesis system, where
usually a whole sentence is given as input, there is no reason
not to access long-range context in both forward and backward
directions. We propose to use DBLSTM-RNN for TTS
synthesis. The schematic diagram of DBLSTM-RNN based
TTS synthesis is shown in Fig. 3.

Text
Analysis

Input Feature
Extraction

Input features

Output Features

Vocoder Waveform

Text

Fig.3. DBLSTM-RNN based TTS synthesis

In DBLSTM-RNN based TTS synthesis, rich contexts are
also used as input features, which contain the binary features
for categorical contexts, e.g. phone labels, POS labels of the
current word, and TOBI labels, and numerical features for the
numerical contexts, e.g., the number of words in a phrase or
the position of the current frame of the current phone. The
output features are acoustic features like spectral envelope and

2. Deep Bidirectional LSTM (DBLSTM)
Recurrent Neural Network

Recurrent Neural Network (RNN) computes hidden state
vector sequence � = (ℎ�, ⋯ , ℎ�) and outputs vector sequence

1965

fundamental frequency. Input features and output features can
be time-aligned, frame-by-frame by a well-trained HMM
model. RNN is also powerful to make it possible to model
sequential data where input-output alignment is unknown by
Connectionist Temporal Classification [14] and Sequence
Transduction [15]. The weights of DNN are trained by using
pairs of input and output features extracted from training data
to minimize the errors between the mapped output from the
given input and the target output.

In RNN training, the training criterion is to minimize the
mean square error between the output features and the ground-
truth. Back-propagation through time (BPTT) is the most
frequently used algorithm for training RNN. BPTT first
unfolds the RNN into feed-forward network through time, and
then training the unfolded network with back-propagation. For
deep bidirectional LSTM, BPTT algorithm is applied to both
forward and backward hidden nodes, and back-propagates
layer by layer. In DNN training, the weights are trained by
back-propagation procedure with a “mini-batch” based

stochastic gradient descent algorithm, which select mini-
batches of frames randomly from the whole training set. In
RNN training, the weight gradients are computed over the
entire utterance. In order to parallelize and speed up, tens of
utterances are randomly selected for each updating, then used
to update the weights of RNN simultaneously.

In synthesis, the input text is converted first into input
feature vector through the text analysis, then input feature
vectors are mapped to output vectors by a trained DBLSTM-
RNN. In HMM-based TTS, the corresponding contextual label
is used to access the decision tree to get the contextual HMM
state sequence. The corresponding means and covariance of
HMM states are fed into the parameter generation module to
generate smooth speech parameter trajectories with the
dynamic information. In DNN-based TTS, by setting the
predicted output features from the DNN as mean vectors and
pre-computed (global) variances of output features from all
training data, the speech feature generation module can
generate smooth trajectories of speech parameter features
which satisfy the statistics of static and dynamic features, and
voiced/unvoiced flag is determined by an empirical threshold
of DNN prediction. Considering the power of RNN in
modelling sequential problems, the parameter generation
module is implicitly embedded inside our proposed DBLSTM-
RNN based TTS synthesis, i.e., the output features of RNN are
only the static features: spectral envelop, gain, fundamental
frequency and U/V decision and then directly be fed into a
vocoder to synthesize final speech waveform.

The effective learning capability of DBLSTM-RNN is
expected to benefit TTS speech synthesis. Deep-layered
architectures can represent long-span, highly-complex
function (transformation) compactly [16]. The functions can
be compactly represented with a k level deep architecture
which can outperform a shallow architecture but with more
weights. A decision tree, which is generally used in HMM-
based TTS for clustering the similar context-dependent state
into tied states, is such a shallow architecture. Both RNN and
DNN can also overcome the limitation of conditional
independence assumption in HMM, i.e., all observations are
dependent only upon the states that generate them. However,
DNN only can model the relationship between text and speech
on the frame level, take the finite phone or HMM state as input,
and generate speech through the transition over the finite states.
With the same finite states as input, RNN can take the

information from neighboring frames, get different hidden
states from the same input and break through the limits from
input finite states.

4. Experiments

4.1. Experimental Setup
A corpus of a female, American English, native speaker, both
phonetically and prosodically rich, is used in our experiments.
The corpus consists of 5,000 training utterances (around 5
hours) and 200 extra utterances are used for testing. Speech
signals are sampled at 16 kHz, windowed by a 25-ms window,
and shifted every 5-ms. An LPC of 40th order is transformed
into static LSPs and their dynamic counterparts. The phonetic
and prosodic contexts include quin-phone, the position of a
phone, syllable and word in phrase and sentence, the length of
word and phrase, stress of syllable, TOBI and POS of word.

In the baseline HMM-based TTS, five-state, left-to-right
HMM phone models, where each state is modeled by a single
Gaussian, diagonal covariance, output distribution, are adopted.
The phonetic and prosodic contexts are used as a question set
in growing the decision trees. Minimum description length
(MDL) criterion [17] for balancing model complexity and
training data size is used as a stopping criterion for state
clustering in decision tree growing. HMM parameters are first
trained in the Maximum Likelihood (ML) sense and then
refined by the minimum generation error (MGE) training. It
adjusts HMM parameters trained by the conventional EM
algorithm to minimize the generation error between
synthesized and original parameter trajectories of the training
data [18].

In the DNN-based TTS, the input feature vector contains
355 dimensions, where 319 are binary features for categorical
linguistic contexts and the rest are numerical linguistic
contexts. The output feature vector contains a voiced/unvoiced
flag, log F0, LSP, gain, their dynamic counterparts, totally 127
dimensions. Voiced/unvoiced flag is a binary feature that
indicates the voicing of the current frame. An exponential
decay function [19] is used to interpolate F0 in unvoiced
speech regions. 80% of silence frames are removed from the
training data to balance the training data and to reduce the
computational cost [3]. Removing silence frames in DNN
training was found useful for avoiding DNN overlearning
silence label in speech recognition task. Both input and output
features of training data are normalized to zero mean and unity
variance. The weights are trained by back-propagation
procedure with a “mini-batch” based stochastic gradient

descent algorithm.
In the DBLSTM-RNN-based TTS, the input feature vector

is the same as the one in DNN-based TTS, while the output
feature vector only contains voiced/unvoiced flag, log F0, LSP
and gain without the dynamic counterparts, totally 43
dimensions. We can also only use current frame information
as input features without the contextual information. Silence
frames are not removed to keep the continuity of acoustic
features within a sentence for RNN training. CURRENT [21],
a machine learning library for RNN, is used in our
experiments.

For the testing utterances, both HMM and DNN outputs
are firstly fed into a parameter generation module to generate
smooth feature parameters with dynamic feature constraints,
RNN outputs can skip this procedure. Then formant

1966

sharpening based on LSP frequencies [24] is used to reduce
the over-smoothing problem of statistic parametric modeling
and the resultant “muffled” speech. Finally speech waveforms
are synthesized by an LPC synthesizer by using generated
speech parameters.

The computational cost of training DBLSTM-RNN is
much higher than that of training DNN, despite taking the
advantage of GPGPU. Given the same number of hidden
layers and same number hidden nodes per layer, the number of
model parameters in DBLSTM-RNN is also much larger than
that of DNN. In our experiments, we replace one or two top
layers of DNN with BLSTM-RNN structure to keep roughly
the same number of model parameters as the HMM and DNN
models. The preliminary results on a corpus with 1,000
training utterances show that the deeper structures of
DBLSTM-RNN don’t always get better performance even
with “layer-wise BP” pre-training [20] in the training. We
conjecture that the inherent depth both in time and space of
DBLSTM-RNN leads to an imprecise gradient decent
computation, particularly when the training data is not large
enough.

The configurations of model training for HMM, DNN and
DBLSTM-RNN based TTS systems are listed as following:

1) HMM: MDL=1 for both LSP and F0 decision tree
growing

2) DNN_A: 6 hidden layers with 512 nodes per layer
3) DNN_B: 3 hidden layers with 1024 nodes per layer
4) Hybrid_A: a hybrid of DNN and BLSTM-RNN. 4

hidden layers with 512 nodes per layer, where the
bottom 3 hidden layers are feed-forward structure
with sigmoid activation functions, while the top
hidden layer is Bidirectional RNN structure with
LSTM (256 forward nodes and 256 backward nodes)

5) Hybrid_B: the hybrid structure as Hybrid_A, but with
2 lower hidden layers with sigmoid activation
functions and 2 upper hidden layers with BLSTM-
RNN (256 forward nodes and 256 backward nodes)

4.2. Evaluation Results and Analysis
Objective and subjective measures are used to evaluate the
performance of three TTS systems on the test data. Synthesis
quality is measured objectively in terms of distortions between
natural test utterances of the original speaker and the
synthesized speech where oracle state durations (obtained by
forced alignment) of natural speech are used. The objective
measures are F0 distortion in root mean squared error (RMSE),
voiced/unvoiced (V/U) swapping errors and normalized
spectrum distance in log spectral distance (LSD). The
subjective measure is an AB preference test between speech
sentence pairs synthesized by two chosen systems.

The results of objective measures of different
configurations in HMM, DNN and Hybrid trainings are listed
in Table 1. For HMM training, we set MDL=1 as a stopping
criterion for state clustering in both LSP and F0 decision tree
growing. According to our previous training experience, an
MDL parameter which is larger or smaller results in worse
objective measures when HMM parameters are firstly trained
in the ML sense and then refined by the MGE training. For
DNN training, we found 3 or 6 hidden layers with 512 or 1024
nodes for each layers seem no much changes on all three
objective measures [4]. By comparing the results of Hybrid

system with those of HMM and DNN, Hybrid system can
achieve a best performance on spectra, i.e., the LSD of natural
and generated spectra trajectories by Hybrid system is
improved by over 0.1 dB. The RMSE of natural and generated
F0 trajectories by Hybrid is on par with that by DNN.
Table 1. The results of objective measures of different
configurations (the number of system parameters) in HMM,
DNN and Hybrid trainings

Measures
Model

LSD
(dB)

V/U Error
rate

F0 RMSE
(Hz)

HMM
(2.89M) 3.74 5.8% 17.7

DNN_A
(1. 55M) 3.73 5.8% 15.8

DNN_B
 (2.59 M) 3.73 5.9% 15.9

Hybrid_A
(2.30M) 3.61 5.7% 16.4

Hybrid_B
(3.61M) 3.54 5.6% 15.8

The performance of HMM, DNN and Hybrid systems are
further subjectively evaluated by perceptual tests. 50
utterances, which are randomly selected from the testing set
and synthesized by the best baseline HMM system (MDL=1),
DNN system (DNN_B) and Hybrid systems (Hybrid_A and
Hybrid_B), are evaluated in three AB preference tests
participated by 60 subjects through Amazon Mechanical Turk
[22]. Each subject evaluates 50 pairs by using headsets. There
are three choices: 1) the former is better; 2) the latter is better;
3) no preference or neutral (The difference between the paired
sentences cannot be perceived or can be perceived but difficult
to choose which one is better). The preference scores are
shown in Fig. 4. It shows the speech synthesized by the Hybrid
system is significantly preferred than the best HMM and DNN
systems (at p < 0.001 level). Its preference scores (59% and
55%) are higher than the HMM system (22%) and the DNN
system (20%). (Some samples of synthesized utterances are
given through http://research.microsoft.com/en-
us/projects/dnntts/default.aspx)

59%
Hybrid_B

19%
Neutral

22%
HMM

55%
Hybrid_B

25%
Neutral

20%
DNN_B

44%
Hybrid_B

29%
Neutral

27%
Hybrid_A

Fig. 4. The preference scores of the HMM, DNN and Hybrid
systems

5. Conclusions
In this paper, we investigate the use of BLSTM-RNN to
perform train statistical parametric model for TTS speech
synthesis. To keep the similar number of model parameters,
only the nodes in upper one or two hidden layers of DNN are
replaced with bidirectional LSTM RNN. Experimental results
show that Hybrid BLSTM-RNN and DNN system performs
better than those of HMM and DNN due to its ability to
capture deep information in a sentence. In the future, we will
try to investigate DBLSTM-RNN with an even deeper
structure with a larger corpus.

1967

6. References
[1] H. Zen, K. Tokuda, and W. Black, Alan, “Statistical parametric

speech synthesis”, Speech Communication, Volume 51, Issue
11, pp. 1039-1064, 2009.

[2] K. Tokuda, T. Kobayashi, T. Masuko, T. Kobayashi, and T.
Kitamura,, “Speech parameter generation algorithms for HMM-
based speech synthesis”, In Proc. ICASSP, pp. 1315-1318,
2000.

[3] H. Zen, A. Senior and M. Senior, “Statistical Parametric Speech
Synthesis Using Deep Neural Networks”, In Proc. ICASSP, pp.

8012-8016, 2013.
[4] Y. Qian, Y.-C. Fan, W.-P. Hu and F. K. Soong, “On the training

aspects of deep neural network (DNN) for parametric TTS
synthesis”, to be published in Proc. ICASSP, 2014.

[5] H. Lu, S. King, and O. Watts, “Combining a vector space
representation of linguistic context with a deep neural network
for text-to-speech synthesis”, In 8th ISCA Workshop on Speech

Synthesis, pp. 281-285, 2013.
[6] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A.

Senior, V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury,
“Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” Signal

Processing Magazine, IEEE, vol. 29, no. 6, pp. 82–97, 2012.
[7] S. Kang, X. Qian, and H. Meng, “Multi-distribution deep belief

network for speech synthesis”, In Proc. ICASSP, pp. 7962-7966,
2013.

[8] Z.-H. Ling, L. Deng, and D. Yu, “Modeling spectral envelopes

using restricted Boltzmann machines for statistical parametric
speech synthesis”, In Proc. ICASSP, pp. 7825-7829, 2013.

[9] A. Graves, A.-R Mohamed, and G. Hinton. “Speech recognition
with deep recurrent neural networks.” In Proc. ICASPP,
pp.6645-6649, 2013.

[10] A. Graves, N. Jaitly, and A.-R Mohamed. “Hybrid speech
recognition with Deep Bidirectional LSTM.” In IEEE ASRU,
pp.273-278, 2013.

[11] H. Sepp, S. Jürgen, “Long short-term memory.” Neural
computation, vol.9, no.8, pp. 1735-1780, 1997.

[12] A. Gers, N. Schraudolph, and S. Jürgen. “Learning precise
timing with LSTM recurrent networks.” The Journal of Machine
Learning Research vol.3, pp. 115-143, 2003.

[13] S. Mike, K. Paliwal. “Bidirectional recurrent neural networks.”
IEEE Transactions on Signal Processing, vol.45, no.11, pp.2673-
2681, 1997.

[14] A. Grave, S. Fernandez., F. Gomez, and J. Schmidhuer,
“Connectionist temporal classification: labelling un-segmented
sequence data with recurrent neural networks,” in ICML,

Pittsburgh, USA, 2006.
[15] A. Grave, “Sequence transduction with recurrent neural

networks,” in ICML Representation Learning Workshop, 2012.
[16] Y. Bengio, “Learning deep architectures for AI,” Foundations

and Trends in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.
[17] K. Shinoda, and T. Watanable, “MDL-based Context-Dependent

Sub-word Modeling for Speech Recognition”, J. Acoust. Soc.
Jpn(E), vol.21, no.2, pp.79-86, 2000.

[18] Y.-J. Wu and R. H. Wang, “Minimum generation error training
for HMM-based speech synthesis”, In Proc. ICASSP, 2006.

[19] C. J. Chen, R. A. Gopinath, M. D. Monkowski, M. A. Picheny,
and K. Shen, “New methods in continuous Mandarin speech

recognition.,” in EUROSPEECH. 1997, ISCA.
[20] F. Seide, G. Li, X. Chen, and D. Yu, “Feature engineering in

context-dependent deep neural networks for conversational
speech transcription,” in IEEE ASRU, 2011.

[21] http://sourceforge.net/projects/currennt/?source=navbar
[22] https://www.mturk.com/mturk/welcome
[23] H. Zen, "Deep Learning in Speech Synthesis," ISCA SSW8,

http://research.google.com/pubs/archive/41539.pdf, 2013.
[24] Z.-H. Ling, Y.-J. Wu, Y.-P. Wang, L. Qin, and R.-H. Wang,

“USTC System for Blizzard Challenge 2006 an Improved

HMM-based Speech Synthesis Method,” Proc. Blizzard
Challenge 2006 Workshop, 2006.

1968

