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Abstract 
Feed-forward, Deep neural networks (DNN)-based text-to-
speech (TTS) systems have been recently shown to outperform 
decision-tree clustered context-dependent HMM TTS systems 
[1, 4]. However, the long time span contextual effect in a 
speech utterance is still not easy to accommodate, due to the 
intrinsic, feed-forward nature in DNN-based modeling. Also, 
to synthesize a smooth speech trajectory, the dynamic features 
are commonly used to constrain speech parameter trajectory 
generation in HMM-based TTS [2]. In this paper, Recurrent 
Neural Networks (RNNs) with Bidirectional Long Short Term 
Memory (BLSTM) cells are adopted to capture the correlation 
or co-occurrence information between any two instants in a 
speech utterance for parametric TTS synthesis. Experimental 
results show that a hybrid system of DNN and BLSTM-RNN, 
i.e., lower hidden layers with a feed-forward structure which is 
cascaded with upper hidden layers with a bidirectional RNN 
structure of LSTM, can outperform either the conventional, 
decision tree-based HMM, or a DNN TTS system, both 
objectively and subjectively. The speech trajectory generated 
by the BLSTM-RNN TTS is fairly smooth and no dynamic 
constraints are needed. 
Index Terms: statistical parametric speech synthesis; hidden 
Markov model; deep neural network; recurrent neural network; 
Bidirectional LSTM 

1. Introduction 
Statistical Parametric TTS Synthesis system has many 
advantages, e.g. the flexibility to change the voice 
characteristics, small footprint, and robustness, over other 
systems [1]. The above mentioned advantages have made the 
parametric, GMM-HMM based TTS synthesis the main stream 
technology for many, particularly hand-held device, speech 
synthesis applications [2]. A parametric HMM is effective to 
model the evolution of speech signals as a stochastic sequence 
of acoustic feature vectors. Many techniques have been 
developed for HMM-based speech recognition, e.g. context-
dependent modeling, state-tying based on decision tree 
clustering, and speaker adaptation. They have been applied 
equally well to HMM-based TTS for speech parameter 
trajectory generation. The trajectory thus generated with 
trained HMMs is fairly smooth and very rarely results in 
concatenation glitches, which occur occasionally in unit-
selection synthesis. However, the overly smoothed parameter 
trajectories, due to statistical average in HMM training, still 
tend to make synthesized speech sound not as lively as 
desired. 

Recently, motivated by the success of DNN in speech 

recognition, a few DNN research attempts have been tried in 
order to improve the performance of vocoder-based speech 
synthesis. Zen, et al. [3,23] comprehensively listed the 
limitations of the conventional HMM-based approach, e.g. 
decision-tree based contextual state clustering, and proposed 
to use DNN to overcome these limitations for speech 
synthesis. It shows DNN based approach, which models the 
relationship between input texts and their corresponding 
acoustic features, can outperform the HMM-based approach 
with a similar number of model parameters. Qian, et al. [4] 
further examined the DNN based TTS synthesis with a 
moderate size corpus more commonly used for parametric 
TTS training, on the training aspects, e.g., activation functions 
and weights initialization in  “pre-training”. Lu, et al. [5] 
employed phone, letter and Vector Space Model (VSM) based 
binary or continuous features as input features, and frame or 
state for output predictions in DNN based synthesis. Deep 
Belief Network (DBN) with stacked, restricted Boltzmann 
machines (RBMs), which can model the structure in the input 
data as generative “pre-training” and find a region of the 

weight-space that can reduce over-fitting for the discriminative 
“fine-tuning” phase in speech recognition [6], is also 
employed to model joint distribution of linguistic and acoustic 
features for speech synthesis [7]. In addition, RBM is directly 
used to represent the distribution of the spectral envelops at 
each HMM state in [8], where the mode of RBM has been 
shown to perform better than the mean of GMM and results in 
better synthesized voice quality.  

In DNN-based speech synthesis, DNN simulates human 
speech production by a layered hierarchical structure to 
transform linguistic text information into its final speech 
output. The limitation of decision-tree based contextual state 
clustering, which is used to tie states of long contexts into 
generalized ones to predict unseen contexts in testing better 
than the HMM-based counterpart, is overcome in DNN. DNN 
also can represent high dimensional and correlated features 
efficiently and model highly complex mapping function 
compactly. However, DNN is still suffering from using short 
unit, e.g., state or frame, as basic modelling unit. To capture 
co-articulation effect and mimic natural intonation, very rich 
contexts are used as input features. To synthesize smooth 
speech speech parameter trajectories, the dynamic model 
parameters are required to be used together with their static 
counterparts to generate smooth parameter trajectories [2].  

In this paper, we investigate how to use Recurrent Neural 
Networks (RNN), especially with bidirectional Long Short 
Term Memory (LSTM) cells [9-13], which in principle can 
capture information from anywhere in the feature sequence, as 
a generation model for TTS synthesis. RNN can be unfolded 
into a wide structure in time scale by taking the previous or 
following hidden states. Like DNN, RNN can also be stacked 
together in multiple layers and to have deep structure in space.  *Work performed as an intern in the Speech Group, Microsoft 
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� = (��, ⋯ , ��) , for a given input vector sequence 	 =
(
�, ⋯ , 
�)  , iterating the following equations from � =
1 to �: 

ℎ = ℋ(���
 + ���ℎ�� + ��)               (1) 
� = ���ℎ + ��                                             (2) 

where � is the weight matrices, e.g. ��� is the weight matrix 
between input and hidden vectors; � is the bias vectors, e.g. �� 
is the bias vector for hidden state vectors; and ℋ  is the 
nonlinear activation function for hidden nodes. 

ℋ is usually a sigmoid or hyperbolic tangent function in 
the conventional RNNs, but the gradient vanishing problem 
caused by these activation function prevents RNN from 
modeling the long-span relations in sequential features. Long 
short term memory (LSTM) network [11], shown in Fig. 1, 
which manually build a memory cell inside, can overcome the 
problems in conventional RNN and can model signals that 
have a mixture of low and high frequency components. For 
LSTM, ℋ is implemented with the following functions [12]: 

 

� = �(���
 + ���ℎ�� + ������ + ��)              (3) 
� = �����
 + ���ℎ�� + ������ + ���           (4) 
c = ���� + ����ℎ(���
 + �!"ℎ�� + �")       (5) 
# = �(��$
 + ��$ℎ�� + ��$� + �$)               (6) 
h = o���ℎ(c)                                                               (7) 

 

where �  is the sigmoid function; �, �, # and �  are input gate, 
forget gate, output gate and cell memory, respectively. 
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Fig.1. Long Short Term Memory 
 

Bidirectional RNN [13] as shown in Fig. 2 can access both 
the preceeding and succeeding contexts. It separates the 
hidden layer into two parts, forward state sequence, ℎ%⃗  , and 
backward state sequence, ℎ⃖%. The iterative process is: 

 

ℎ%⃗  = ℋ����%%⃗ 
 + ��%%⃗ �%%⃗ ℎ%⃗ �� + ��%%⃗ �                   (8) 

ℎ⃖% = ℋ����⃖%%
 + ��⃖%%�⃖%%ℎ⃖%*� + ��⃖%%�                   (9) 

� = ��%%⃗ �ℎ%⃗  + ��⃖%%�ℎ⃖% + ��                             (10) 
 

Deep bidirectional RNN can be established by stacking 
multiple RNN hidden layers on top of each other. Each hidden 
state sequence, ℎ-, is replaced by the forward and backward, 
ℎ%⃗ - and ℎ⃖%-, and the iterative process is: 

 

ℎ%⃗ 
- = ℋ���%%⃗ ./0�%%⃗ .ℎ%⃗ 

-�� + ��%%⃗ .�%%⃗ .ℎ%⃗ ��
- + ��%%⃗

-�     (11) 

ℎ⃖%
- = ℋ���⃖%%./0�⃖%%.ℎ⃖%

-�� + ��⃖%%.�⃖%%.ℎ⃖%*�
- + ��⃖%%

-�     (12) 

� = ��%%⃗ 2�ℎ%⃗ 
3 + ��⃖%%2�ℎ⃖%

3 + ��                            (13) 
 

Deep bidirectional LSTM (DBLSTM) is the integration of 
deep bidirectional RNN and LSTM. By taking the advantages 
of DNN and LSTM, it can model the deep representation of 
long-span features. 

  

Backward Layer

Forward Layer

Input

Output

 
 

Fig.2. Bidirectional RNN 

3. DBLSTM-RNN based TTS Synthesis 
Speech production can be seen as a process to select spoken 
words, formulate their phonetics and then finally articulate 
output speech with the articulators. So it is a continuous 
physical dynamic process. DBLSTM-RNN can simulate 
human speech production by a layered hierarchical and wide 
in time scale structure to transform linguistic text information 
into its final speech output. In a TTS synthesis system, where 
usually a whole sentence is given as input, there is no reason 
not to access long-range context in both forward and backward 
directions. We propose to use DBLSTM-RNN for TTS 
synthesis. The schematic diagram of DBLSTM-RNN based 
TTS synthesis is shown in Fig. 3. 
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Fig.3. DBLSTM-RNN based TTS synthesis 
 

In DBLSTM-RNN based TTS synthesis, rich contexts are 
also used as input features, which contain the binary features 
for categorical contexts, e.g. phone labels, POS labels of the 
current word, and TOBI labels, and numerical features for the 
numerical contexts, e.g., the number of words in a phrase or 
the position of the current frame of the current phone. The 
output features are acoustic features like spectral envelope and 

2. Deep Bidirectional LSTM (DBLSTM) 
Recurrent Neural Network 

Recurrent Neural Network (RNN) computes hidden state 
vector sequence � = (ℎ�, ⋯ , ℎ�) and outputs vector sequence 
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fundamental frequency. Input features and output features can 
be time-aligned, frame-by-frame by a well-trained HMM 
model. RNN is also powerful to make it possible to model 
sequential data where input-output alignment is unknown by 
Connectionist Temporal Classification [14] and Sequence 
Transduction [15]. The weights of DNN are trained by using 
pairs of input and output features extracted from training data 
to minimize the errors between the mapped output from the 
given input and the target output.  

In RNN training, the training criterion is to minimize the 
mean square error between the output features and the ground-
truth. Back-propagation through time (BPTT) is the most 
frequently used algorithm for training RNN. BPTT first 
unfolds the RNN into feed-forward network through time, and 
then training the unfolded network with back-propagation. For 
deep bidirectional LSTM, BPTT algorithm is applied to both 
forward and backward hidden nodes, and back-propagates 
layer by layer. In DNN training, the weights are trained by 
back-propagation procedure with a “mini-batch” based 

stochastic gradient descent algorithm, which select mini-
batches of frames randomly from the whole training set. In 
RNN training, the weight gradients are computed over the 
entire utterance. In order to parallelize and speed up, tens of 
utterances are randomly selected for each updating, then used 
to update the weights of RNN simultaneously. 

In synthesis, the input text is converted first into input 
feature vector through the text analysis, then input feature 
vectors are mapped to output vectors by a trained DBLSTM-
RNN. In HMM-based TTS, the corresponding contextual label 
is used to access the decision tree to get the contextual HMM 
state sequence. The corresponding means and covariance of 
HMM states are fed into the parameter generation module to 
generate smooth speech parameter trajectories with the 
dynamic information. In DNN-based TTS, by setting the 
predicted output features from the DNN as mean vectors and 
pre-computed (global) variances of output features from all 
training data, the speech feature generation module can 
generate smooth trajectories of speech parameter features 
which satisfy the statistics of static and dynamic features, and 
voiced/unvoiced flag is determined by an empirical threshold 
of DNN prediction. Considering the power of RNN in 
modelling sequential problems, the parameter generation 
module is implicitly embedded inside our proposed DBLSTM-
RNN based TTS synthesis, i.e., the output features of RNN are 
only the static features: spectral envelop, gain, fundamental 
frequency and U/V decision and then directly be fed into a 
vocoder to synthesize final speech waveform.  

The effective learning capability of DBLSTM-RNN is 
expected to benefit TTS speech synthesis. Deep-layered 
architectures can represent long-span, highly-complex 
function (transformation) compactly [16]. The functions can 
be compactly represented with a k level deep architecture 
which can outperform a shallow architecture but with more 
weights. A decision tree, which is generally used in HMM-
based TTS for clustering the similar context-dependent state 
into tied states, is such a shallow architecture. Both RNN and 
DNN can also overcome the limitation of conditional 
independence assumption in HMM, i.e., all observations are 
dependent only upon the states that generate them. However, 
DNN only can model the relationship between text and speech 
on the frame level, take the finite phone or HMM state as input, 
and generate speech through the transition over the finite states. 
With the same finite states as input, RNN can take the 

information from neighboring frames, get different hidden 
states from the same input and break through the limits from 
input finite states. 

4. Experiments 

4.1. Experimental Setup 
A corpus of a female, American English, native speaker, both 
phonetically and prosodically rich, is used in our experiments. 
The corpus consists of 5,000 training utterances (around 5 
hours) and 200 extra utterances are used for testing.  Speech 
signals are sampled at 16 kHz, windowed by a 25-ms window, 
and shifted every 5-ms. An LPC of 40th order is transformed 
into static LSPs and their dynamic counterparts. The phonetic 
and prosodic contexts include quin-phone, the position of a 
phone, syllable and word in phrase and sentence, the length of 
word and phrase, stress of syllable, TOBI and POS of word. 

In the baseline HMM-based TTS, five-state, left-to-right 
HMM phone models, where each state is modeled by a single 
Gaussian, diagonal covariance, output distribution, are adopted. 
The phonetic and prosodic contexts are used as a question set 
in growing the decision trees. Minimum description length 
(MDL) criterion [17] for balancing model complexity and 
training data size is used as a stopping criterion for state 
clustering in decision tree growing. HMM parameters are first 
trained in the Maximum Likelihood (ML) sense and then 
refined by the minimum generation error (MGE) training. It 
adjusts HMM parameters trained by the conventional EM 
algorithm to minimize the generation error between 
synthesized and original parameter trajectories of the training 
data [18]. 

In the DNN-based TTS, the input feature vector contains 
355 dimensions, where 319 are binary features for categorical 
linguistic contexts and the rest are numerical linguistic 
contexts. The output feature vector contains a voiced/unvoiced 
flag, log F0, LSP, gain, their dynamic counterparts, totally 127 
dimensions. Voiced/unvoiced flag is a binary feature that 
indicates the voicing of the current frame.  An exponential 
decay function [19] is used to interpolate F0 in unvoiced 
speech regions. 80% of silence frames are removed from the 
training data to balance the training data and to reduce the 
computational cost [3]. Removing silence frames in DNN 
training was found useful for avoiding DNN overlearning 
silence label in speech recognition task. Both input and output 
features of training data are normalized to zero mean and unity 
variance. The weights are trained by back-propagation 
procedure with a “mini-batch” based stochastic gradient 

descent algorithm.  
In the DBLSTM-RNN-based TTS, the input feature vector 

is the same as the one in DNN-based TTS, while the output 
feature vector only contains voiced/unvoiced flag, log F0, LSP 
and gain without the dynamic counterparts, totally 43 
dimensions. We can also only use current frame information 
as input features without the contextual information. Silence 
frames are not removed to keep the continuity of acoustic 
features within a sentence for RNN training. CURRENT [21], 
a machine learning library for RNN, is used in our 
experiments. 

For the testing utterances, both HMM and DNN outputs 
are firstly fed into a parameter generation module to generate 
smooth feature parameters with dynamic feature constraints, 
RNN outputs can skip this procedure. Then formant 
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sharpening based on LSP frequencies [24] is used to reduce 
the over-smoothing problem of statistic parametric modeling 
and the resultant “muffled” speech. Finally speech waveforms 
are synthesized by an LPC synthesizer by using generated 
speech parameters. 

The computational cost of training DBLSTM-RNN is 
much higher than that of training DNN, despite taking the 
advantage of GPGPU. Given the same number of hidden 
layers and same number hidden nodes per layer, the number of 
model parameters in DBLSTM-RNN is also much larger than 
that of DNN. In our experiments, we replace one or two top 
layers of DNN with BLSTM-RNN structure to keep roughly 
the same number of model parameters as the HMM and DNN 
models. The preliminary results on a corpus with 1,000 
training utterances show that the deeper structures of 
DBLSTM-RNN don’t always get better performance even 
with “layer-wise BP” pre-training [20] in the training. We 
conjecture that the inherent depth both in time and space of 
DBLSTM-RNN leads to an imprecise gradient decent 
computation, particularly when the training data is not large 
enough. 

The configurations of model training for HMM, DNN and 
DBLSTM-RNN based TTS systems are listed as following: 

1) HMM:  MDL=1 for both LSP and F0 decision tree 
growing 

2) DNN_A: 6 hidden layers with 512 nodes per layer 
3) DNN_B: 3 hidden layers with 1024 nodes per layer 
4) Hybrid_A: a hybrid of DNN and BLSTM-RNN. 4 

hidden layers with 512 nodes per layer, where the 
bottom 3 hidden layers are feed-forward structure 
with sigmoid activation functions, while the top 
hidden layer is Bidirectional RNN structure with 
LSTM (256 forward nodes and 256 backward nodes) 

5) Hybrid_B: the hybrid structure as Hybrid_A, but with 
2 lower hidden layers with sigmoid activation 
functions and 2 upper hidden layers with BLSTM-
RNN (256 forward nodes and 256 backward nodes) 

4.2. Evaluation Results and Analysis 
Objective and subjective measures are used to evaluate the 
performance of three TTS systems on the test data. Synthesis 
quality is measured objectively in terms of distortions between 
natural test utterances of the original speaker and the 
synthesized speech where oracle state durations (obtained by 
forced alignment) of natural speech are used. The objective 
measures are F0 distortion in root mean squared error (RMSE), 
voiced/unvoiced (V/U) swapping errors and normalized 
spectrum distance in log spectral distance (LSD). The 
subjective measure is an AB preference test between speech 
sentence pairs synthesized by two chosen systems. 

The results of objective measures of different 
configurations in HMM, DNN and Hybrid trainings are listed 
in Table 1. For HMM training, we set MDL=1 as a stopping 
criterion for state clustering in both LSP and F0 decision tree 
growing. According to our previous training experience, an 
MDL parameter which is larger or smaller results in worse 
objective measures when HMM parameters are firstly trained 
in the ML sense and then refined by the MGE training. For 
DNN training, we found 3 or 6 hidden layers with 512 or 1024 
nodes for each layers seem no much changes on all three 
objective measures [4]. By comparing the results of Hybrid 

system with those of HMM and DNN, Hybrid system can 
achieve a best performance on spectra, i.e., the LSD of natural 
and generated spectra trajectories by Hybrid system is 
improved by over 0.1 dB.  The RMSE of natural and generated 
F0 trajectories by Hybrid is on par with that by DNN. 
Table 1. The results of objective measures of different 
configurations (the number of system parameters) in HMM, 
DNN and Hybrid trainings 

Measures 
Model 

LSD  
(dB) 

V/U Error 
rate 

F0 RMSE 
(Hz) 

HMM  
(2.89M) 3.74 5.8% 17.7 

DNN_A  
(1. 55M) 3.73 5.8% 15.8 

DNN_B 
 (2.59 M) 3.73 5.9% 15.9 

Hybrid_A 
(2.30M) 3.61 5.7% 16.4 

Hybrid_B 
(3.61M) 3.54 5.6% 15.8 

 

The performance of HMM, DNN and Hybrid systems are 
further subjectively evaluated by perceptual tests. 50 
utterances, which are randomly selected from the testing set 
and synthesized by the best baseline HMM system (MDL=1), 
DNN system (DNN_B) and Hybrid systems (Hybrid_A and 
Hybrid_B), are evaluated in three AB preference tests 
participated by 60 subjects through Amazon Mechanical Turk 
[22]. Each subject evaluates 50 pairs by using headsets. There 
are three choices: 1) the former is better; 2) the latter is better; 
3) no preference or neutral (The difference between the paired 
sentences cannot be perceived or can be perceived but difficult 
to choose which one is better). The preference scores are 
shown in Fig. 4. It shows the speech synthesized by the Hybrid 
system is significantly preferred than the best HMM and DNN 
systems (at p < 0.001 level). Its preference scores (59% and 
55%) are higher than the HMM system (22%) and the DNN 
system (20%). (Some samples of synthesized utterances are 
given through http://research.microsoft.com/en-
us/projects/dnntts/default.aspx ) 
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Fig. 4. The preference scores of the HMM, DNN and Hybrid 
systems  

5. Conclusions 
In this paper, we investigate the use of BLSTM-RNN to 
perform train statistical parametric model for TTS speech 
synthesis. To keep the similar number of model parameters, 
only the nodes in upper one or two hidden layers of DNN are 
replaced with bidirectional LSTM RNN. Experimental results 
show that Hybrid BLSTM-RNN and DNN system performs 
better than those of HMM and DNN due to its ability to 
capture deep information in a sentence. In the future, we will 
try to investigate DBLSTM-RNN with an even deeper 
structure with a larger corpus. 
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