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Abstract

We introduce the Merlin speech synthesis toolkit for neural
network-based speech synthesis. The system takes linguis-
tic features as input, and employs neural networks to predict
acoustic features, which are then passed to a vocoder to pro-
duce the speech waveform. Various neural network architec-
tures are implemented, including a standard feedforward neural
network, mixture density neural network, recurrent neural net-
work (RNN), long short-term memory (LSTM) recurrent neural
network, amongst others. The toolkit is Open Source, written
in Python, and is extensible. This paper briefly describes the
system, and provides some benchmarking results on a freely-
available corpus.

Index Terms: Speech synthesis, deep learning, neural network,
Open Source, toolkit

1. Introduction

Text-to-speech (TTS) synthesis involves generating a speech
waveform, given textual input. Freely-available toolkits are
available for two of the most widely used methods: wave-
form concatenation [1, for example], and HMM-based statis-
tical parametric speech synthesis, or simply SPSS [2]. Even
though the naturalness of good waveform concatenation speech
continues to be generally significantly better than that of wave-
forms generated via SPSS using a vocoder, the advantages of
flexibility, control, and small footprint mean that SPSS remains
an attractive proposition.

In SPSS, one of the most important factors that limits the
naturalness of the synthesised speech [2, 3] is the so-called
acoustic model, which learns the relationship between linguis-
tic and acoustic features: this is a complex and non-linear re-
gression problem. For the past decade, hidden Markov mod-
els (HMMs) have dominated acoustic modelling [4]. The way
that the HMMs are parametrised is critical, and almost univer-
sally this entails clustering (or ‘tying’) groups of models for
acoustically- and linguistically-related contexts, using a regres-
sion tree. However, the necessary across-context averaging con-
siderably degrades the quality of synthesised speech [3]. One
might reasonably say that HMM-based SPSS would be more
accurately called regression tree-based SPSS, and then the obvi-
ous question to ask is: why not use a more powerful regression
model than a tree?

Recently, neural networks have been ‘rediscovered’ as
acoustic models for SPSS [5, 6]. In the 1990s, neural net-
works had already been used to learn the relationship between
linguistic and acoustic features [7, 8, 9], as duration mod-
els to predict segment durations [10], and to extract linguis-
tic features from raw text input [11]. The main differences
between today and the 1990s are: more hidden layers, more
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training data, more advanced computational resource, more ad-
vanced training algorithms, and significant advancements in
the various other techniques needed for a complete paramet-
ric speech synthesiser: the vocoder, and parameter compensa-
tion/enhancement/postfiltering techniques.

1.1. Recent work neural network speech synthesis

In the recent studies, restricted Boltzmann machines (RBMs)
were used to replace Gaussian mixture models to model the dis-
tribution of acoustic features [12]. The work claims that RBMs
can model spectral details, and result in better quality of syn-
thesised speech. In [13, 14], deep belief networks (DBNs) as
deep generative model were employed to model the relationship
between linguistic and acoustic features jointly. Deep mixture
density networks [15] and trajectory real-valued neural autore-
gressive density estimators [16] were also employed to predict
the probability density function over acoustic features.

Deep feedforward neural networks (DNN5s) as a deep con-
ditional model are the model popular model in the literature
to map linguistic features to acoustic features directly [17, 18,
19, 20, 21]. The DNNs can be viewed as replacement for
the decision tree used in the HMM-based speech as detailed
in [22]. It can also be used to model high-dimensional spec-
tra directly [23]. In the feedforward framework, several tech-
niques, such multitask learning [20], minimum generation er-
ror [24, 25, 26], have been applied to improve the performance.
However, DNNs perform the mapping frame by frame without
considering contextual constraints, even though stacked bottle-
neck features can include some short-term contextual informa-
tion [26].

To include contextual constraints, a bidirectional long
short-term memory (LSTM) based recurrent neural network
(RNN) was employed in [27] to formulate TTS as a sequence
to sequence mapping problem, that is to map a sequence of lin-
guistic features to the corresponding sequence of acoustic fea-
tures. In [28], LSTM with a recurrent output layer was proposed
to include contextual constraints. In [29], LSTM and gated re-
current unit (GRU) based RNNs are combined with mixture
density model to predict a sequence of probability density func-
tions. In [30], a systematic analysis of LSTM-based RNN was
presented to provide a better understanding of LSTM.

1.2. The need for a new toolkit

Recently, even though there has been an explosion in the use
of neural networks for speech synthesis, a truly Open Source
toolkit is missing. Such a toolkit would underpin reproducible
research and allow for more accurate cross-comparisons of
competing techniques, in very much the same way that the HTS
toolkit has done for HMM-based work. In this paper, we intro-
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duce Merlin', which is an Open Source neural network based
speech synthesis system. The system has already been exten-
sively used for the work reported in a number of recent research
papers[30, 26, 22, 20, 31, 32, 23, 33, for example]. This pa-
per will briefly introduce the design and implementation of the
toolkit and provide benchmarking results on a freely-available
speech corpus.

In addition to the results here and in the above list of
previously-published papers, Merlin is the DNN benchmark
system for the 2016 Blizzard Challenge. There, it is used
in combination with the Ossian front-end > and the WORLD
vocoder [34], both of which are also Open Source and can be
used without restriction, to provide an easily-reproducible sys-
tem.

2. Design and Implementation

Like HTS, Merlin is not a complete TTS system. It provides
the core acoustic modelling functions: linguistic feature vec-
torisation, acoustic and linguistic feature normalisation, neu-
ral network acoustic model training, and generation. Cur-
rently, the waveform generation module supports two vocoders:
STRAIGHT [35] and WORLD [34] but the toolkit is easily ex-
tensible to other vocoders in the future. It is equally easy to
interface to different front-end text processors.

Merlin is written in Python, based on the theano library.
It comes with documentation for the source code and a set of
‘recipes’ for various system configurations.

2.1. Front-End

Merlin requires an external front-end, such as Festival or Os-
sian. The front-end output must currently be formatted as HTS-
style labels with state-level alignment. The toolkit converts such
labels into vectors of binary and continuous features for neural
network input. The features are derived from the label files us-
ing HTS-style questions. It is also possible to directly provide
already-vectorised input features if this HTS-like workflow is
not convenient.

2.2. Vocoder

Currently, the system supports two vocoders: STRAIGHT (the
C language version) and WORLD. STRAIGHT cannot be in-
cluded in the distribution because it is not Open Source, but
the Merlin distribution does include a modified version of the
WORLD vocoder. The modifications add separate analysis and
synthesis executables, as is necessary for SPSS. It is not diffi-
cult to support some other vocoder, and details on how to do
this can be found in the included documentation.

2.3. Feature normalisation

Before training a neural network, it is important to normalise
features. The toolkit supports two normalisation methods: min-
max, and mean-variance. The min-max normalisation will nor-

IThe toolkit can be checked out anonymously from the
Github repository: https://github.com/CSTR-Edinburgh/
merlin

2http://simpledall.org/product/ossian
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Vocoder parameters

Linguistic features

Figure 1: An illustration of feedforward neural network with
four hidden layers.

malise features to the range of [0.01 0.99], while the mean-
variance normalisation will normalise features to zero mean and
unit variance. Currently, by default the linguistic features un-
dergo min-max normalisation, while output acoustic features
have mean-variance normalisation applied.

2.4. Acoustic modelling

Merlin includes implementations of several currently-popular
acoustic models, each of which comes with an example ‘recipe’
to demonstrate its use.

2.4.1. Feedforward neural network

A feedforward neural network is the simplest type of network.
With enough layers, this architecture is usually called a Deep
Neural Network (DNN). The input is used to predict the output
via several layers of hidden units, each of which performs a
nonlinear function, as follows:

h; = H(W*"x, + b")
yi = W™h, + b?,

ey
(€3

where #(+) is a nonlinear activation function in a hidden layer,
WP and W are the weight matrices, b” and b¥ are bias
vectors, and W, is a linear regression to predict target fea-
tures from the activations in the preceding hidden layer. Fig. 1
is an illustration of a feedforward neural network. It takes lin-
guistic features as input and predicts the vocoder parameters
through several hidden layers (in the figure, four hidden lay-
ers). In the remainder of this paper, we will use DNN to indi-
cate a feedforward neural network of this general type. In the
toolkit, sigmoid and hyperbolic tangent activation functions are
supported for the hidden layers.

2.4.2. Long short-term memory (LSTM) based RNN

In a DNN, linguistic features are mapped to vocoder parame-
ters frame by frame without considering the sequential nature
of speech. In contrast, recurrent neural networks (RNNs) are



designed for sequence-to-sequence mapping. The use of long
short-term memory (LSTM) units is a popular way to realise an
RNN.

The basic idea of the LSTM was proposed in [36], and is
a commonly used architecture for speech recognition [37]. It is
formulated as:

ir = S(W'x; + R'hy—1 +p' © ¢y + b'), 3)
fi = 5(fot +R'hy, + pf ®ci—1+ bf), “4)
cc=f0c1+1:O g(WCXt +Rhi—q + bc), (&)
o =(W°x; + R°hy—1 + p° ©® ¢t + b°), 6)
h: = 0: ©® g(cy). (N

where i, f;, and o, are the input, forget, and output gates, re-
spectively; c; is the so-called memory cell; h; is the hidden
activation at time ¢; x is the input signal; W™, and R* are the
weight matrices applied on input and recurrent hidden units, re-
spectively; p* and b™* are the peep-hole connections and biases,
respectively; 0(-) and g(-) are the sigmoid and hyperbolic tan-
gent activation functions, respectively; ® means element-wise
product.

Figure 2 presents an illustration of a standard LSTM unit.
It passes the input signal and hidden activation of the previous
time instance through an input gate, forget gate, memory cell
and output gate to produce the activation. In our implementa-
tion, the several variants described in [30] are also available.
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Figure 2: An illustration of a long short-term memory unit. The
inputs to the unit are the input signal and the hidden activation
of the previous time instance.

2.4.3. Bidirectional RNN

In a uni-directional RNNs, only contextual information from
past time instances are taken into account, whilst in a bidirec-
tional RNNs can learn from information propagated both for-
wards and backwards in time. A bidirectional RNN can be de-
fined as,

e :H(W"hxt—i—Rh T +bo), ®)
b= % +R 0, +be), )
yt:wtht+w gLy, (10)
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where h ; and E are hidden activations from positive and neg-

iy
ative directions, respectively; W* and Wxz are weight ma-
——

trices for input signal; and R® ' and Rri are the recurrent
matrices for forward and backward directions, respectively.

In bidirectional RNNs, the hidden units can be without gat-
ing, or gated units such as LSTM. We will use BLSTM to de-
note a bidirectional LSTM-based RNN.

2.4.4. Other variants

In Merlin, other variants of neural networks are also imple-
mented, such as gated recurrent units (GRUs) [38], simplified
LSTM [30], and the other variants on LSTMs and GRUs de-
scribed in [30]. All these basic units can be assembled together
to create a new architecture by simply changing a configuration
file. For example, to implement a 4-layer feedforward neural
network using hyperbolic tangent units, one can simply specify
the following architecture in the configuration file:

[TANH, TANH, TANH, TANH].

Similarly, a hybrid bidirectional LSTM-based RNN can be
specified as:

[TANH, TANH, TANH, BLSTM]

in the configuration file. More details of the supported unit type
can be found in the documentation of the system.

3. Benchmarking performance
3.1. Experimental setup

To demonstrate the performance of the toolkit, we report bench-
marking experiments for several architectures implemented in
Merlin. A freely-available corpus’ from a British male profes-
sional speaker was used in the experiments. The speech signal
was used at a sampling rate of 48 kHz. 2400 utterances were
used for training, 70 as a development set, and 72 as the evalu-
ation set. All sets are disjoint.

The front-end for all experiments is Festival. The input fea-
tures for all neural networks consisted of 491 features. 482 of
these were derived from linguistic context, inlcuding quinphone
identity, part-of-speech, and positional information within a syl-
lable, word and phrase, etc. The remaining 9 are within-phone
positional information: frame position within HMM state and
phone, state position within phone both forward and backward,
and state and phone durations. The frame alignment and state
information was obtained from forced alignment using a mono-
phone HMM-based system with 5 emitting states per phone.

We used two vocoders in these experiments:
STRAIGHT [35] and WORLD [34]. STRAIGHT (C lan-
guage version), which is not Open Source, was used to extract
60-dimensional Mel-Cepstral Coefficients (MCCs), 25 band
aperiodicities (BAPs), and fundamental frequency on log scale
(log Fy) at 5 msec frame intervals. Similar, WORLD", which is
Open Source, was also used to extract 60-dimensional MCCs,
5-dimensional BAPs, and log Fp at 5 msec frame intervals. The

3http://dx.doi.org/10.7488/ds/140
4The modified version mentioned earlier, and included in the Merlin
distribution.



Table 1: Comparison of objective results using the STRAIGHT
vocoder. MCD: Mel-Cepstral Distortion. BAP: distortion of
band aperiodicities. FO RMSE is calculated on a linear scale.
V/UV: voiced/unvoiced error.

MCD BAP FORMSE V/UV
(dB) (dB) (Hz) (%)
DNN 409 194 8.94 4.15
LSTM 403 1.93 8.66 3.98
BLSTM 402 193 8.68 4.00
BLSTM-S | 436 197 9.37 4.39

output features of neural networks thus consisted of MCCs,
BAPs, and log Fy with their deltas and delta-deltas, plus a
voiced/unvoiced binary feature.

Before training, the input features were normalised using
min-max to the range [0.01, 0.99] and output features were nor-
malised to zero mean and unit variance. At synthesis time, Max-
imum likelihood parameter generation (MLPG) was applied to
generate smooth parameter trajectories from the de-normalised
neural network outputs, then spectral enhancement in the cep-
stral domain was applied to the MCCs to enhance naturalness.
Speech Signal Processing Toolkit (SPTK’) was used to imple-
ment the spectral enhancement.

We report four benchmark systems here:

e DNN: 6 feedforward hidden layers; each hidden layer
has 1024 hyperbolic tangent units.

e LSTM: a hybrid architecture with four feedforward hid-
den layers of 1024 hyperbolic tangent units each, fol-
lowed by a single LSTM layer with 512 units.

e BLSTM: a hybrid architecture similar to the LSTM, but
replacing the LSTM layer with a BLSTM layer of 384
units.

e BLSTM-S: the architecture is the same as BLSTM; the
delta and delta-delta features are omitted from the output
feature vectors, and no MLPG is applied; theoretically,
the BLSTM architecture should be able to learn to de-
rive delta features during training, and should generate
trajectories that are already smooth.

3.2. Objective Results

The objective results of the four systems using the STRAIGHT
vocoder are presented in Table 1. It is observed that LSTM and
BLSTM achieve better objective results than DNN, as expected.
The BLSTM-S that does not use dynamic features during train-
ing and does not employ MLPG at generation exhibits much
higher objective error than all other architectures.

The objective results of the same four architectures, but this
time using the WORLD vocoder, are presented in Table 2. The
picture is similar to when using the STRAIGHT vocoder. Note
that FO RMSE and V/UV are not directly comparable between
Table 1 and 2, as they use different FO extractors. For both
vocoders, we simply use the default settings provided by the
respective tools’ creators.

In general, the objective results confirm that LSTM and
BLSTM can achieve better objective results than DNN (as ex-

5Available at: http://sp-tk.sourceforge.net/
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Table 2: Comparison of objective results using the WORLD
vocoder. MCD: Mel-Cepstral Distortion. BAP: distortion of
band aperiodicities. FO RMSE is calculated on a linear scale.
V/UV: voiced/unvoiced error.

MCD BAP FORMSE V/UV
(dB) (dB) (Hz) (%)
DNN 454 036 9.57 11.38
LSTM 452 035 9.51 11.02
BLSTM 451 035 9.57 11.18
BLSTM-S | 470  0.36 10.01 11.66

pected), but that dynamic features and MLPG are still useful
for BLSTM, even though it has a theoretical ability to model
the necessary trajectory information.

3.3. Subjective Results

We conducted MUSHRA (MUlItiple Stimuli with Hidden Ref-
erence and Anchor) listening tests to subjectively evaluate the
naturalness of the synthesised speech. We evaluated all the four
benchmark systems in two separate MUSHRA tests: one for
STRAIGHT and a separate test for the WORLD vocoder.

In each MUSHRA test, there were 30 native British English
listeners, and each listeners rated 20 sets that were randomly
selected from the evaluation set. In each set, a natural speech
with the same linguistic content was also included as the hidden
reference. The listeners were instructed to give each stimulus a
score between 0 and 100, and to rate one of them in each set as
100, which means natural.

The MUSHRA scores for systems using STRAIGHT are
presented in Fig 3. It is observed that LSTM and BLSTM are
significantly better than DNN (p-value below 0.01). BLSTM
produces slightly more natural speech than LSTM, but the dif-
ference is not significant. It is also found that BLSTM is signif-
icantly more natural than BLSTM-S, consistent with the objec-
tive errors reported above.

The MUSHRA scores for systems using WORLD are pre-
sented in Fig 4. The relative differences across systems are sim-
ilar to the STRAIGHT case.

In general, subjective results are consistent with objective
results, and there are similar trends regardeless of vocoder. Both
objective and and subjective results confirm that LSTM and
BLSTM offer better performance than DNN, and that MLPG
is still useful for BLSTM.

4. Conclusions

In this paper, we have introduced the Open Source Merlin
speech synthesis toolkit, and provided reproducible benchmark
results on a corpus. We hope the availability of this system
will promote open research on neural network speech synthesis,
make comparisons between different neural network configura-
tions easier, and allow researchers to report reproducible results.
The toolkit, as released, includes the recipes necessary to repro-
duce all results in this paper, and results in some of our recent
publications. The intention is that future results published (by
ourselves or others) using this toolkit will also be accompanied
by recipe.
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