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What is End-to-End ASR?
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Conventional ASR
LM Training
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Conventional ASR

● Most ASR systems involve acoustic, pronunciation and language model components 

which are trained separately

● Discriminative Sequence Training of AMs does couple these components

● Curating pronunciation lexicon, defining phoneme sets for the particular language 

requires expert knowledge, and is time-consuming
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What is End-to-End ASR?



 

A system which directly maps a 
sequence of input acoustic 
features into a sequence of 
graphemes or words.
 

“
”



 

A system which is trained to 
optimize criteria that are related 
to the final evaluation metric 
that we are interested in 
(typically, word error rate). 

“

”



Motivation

 

A single end-to-end trained sequence-to-sequence model, which directly outputs words or 
graphemes, could greatly simplify the speech recognition pipeline.

Key Takeaway

End2End Trained
Sequence-to-Sequence

Recognizer

Acoustic Model

Pronunciation 
Model

Verbalizer

Language
Model

2nd-Pass 
Rescoring

Typical Speech System



Production Interaction with other components in production.

Agenda
Research developments on end-to-end models towards productionisation.  

Online Models Streaming models for real world applications.

Attention Pushing the limit of attention-based end-to-end models.



Historical Development of 
End-to-End ASR
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CTC
Connectionist Temporal Classification



● CTC was proposed by [Graves et al., 2006] 
as a way to train an acoustic model 
without requiring frame-level alignments

● Early work, used CTC with phoneme 
output targets - not “end-to-end”

● CD-phoneme based CTC models achieve 
state-of-the-art performance for 
conventional ASR, but word-level lagged 
behind [Sak et al., 2015] 

[Graves et al., 2006] ICML

Connectionist Temporal Classification (CTC)



Connectionist Temporal Classification (CTC)

 

CTC allows for training an acoustic model without the need for frame-level alignments 
between the acoustics and the transcripts.

Key Takeaway



Connectionist Temporal Classification (CTC)

 

Encoder: Multiple layers of Uni- or Bi-directional RNNs (often LSTMs).Key Takeaway



Connectionist Temporal Classification (CTC)

 

CTC introduces a special symbol - blank (denoted by B) - and maximizes the total probability 
of the label sequence by marginalizing over all possible alignments

Key Takeaway

B B c B B a a B B t
B c c B a B B B B t

...
B c B B a B B t t B 



Connectionist Temporal Classification (CTC)

 

In a conventional hybrid system, this would correspond to defining the HMMs corresponding 
to each unit to consist of a shared initial state (blank), followed by a separate state(s) for the 
actual unit.

Key Takeaway

B B c B B a a B B t
B c c B a B B B B t

...
B c B B a B B t t B 

B c B a

Mei
Typewritten Text
Not completely the same. bcc -> c for CTCBut can be "c" or "c c" for HMM.For CTC, two have to consecutive c's, there has to be a blank in between.



Connectionist Temporal Classification (CTC)

 

Computing the gradients of the loss requires the computation of the alpha-beta variables 
using the forward-backward algorithm [Rabiner, 1989]

Key Takeaway

c
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1 2 3 Frames, t T-2 T-1 T

Forward-Backward 
Algorithm Computation



[Graves and Jaitly, 2014] ICML

● Graves and Jaitly proposed a system with 
character-based CTC which directly 
output word sequences given input 
speech

● Using an external LM was important for 
getting good performance. Results 
reported by rescoring a baseline system.

● Also proposed minimizing expected 
transcription error [WSJ: 8.7% → 8.2%] 

CTC-Based End-to-End ASR



● LM incorporated into first-pass decoding; easy integration with WFSTs
○ [Hannun et al., 2014] [Maas et al., 2015]: Direct first-pass decoding with an LM as 

opposed to rescoring as in [Graves & Jaitly, 2014]
○ [Miao et al., 2015]: EESEN framework for decoding with WFSTs, open source toolkit

● Large-scale GPU training; data augmentation; multiple languages
○ [Hannun et al., 2014; DeepSpeech] [Amodei et al., 2015; DeepSpeech2]: Large scale 

GPU training; Data Augmentation; Mandarin and English

● Using longer span units: words instead of characters
○ [Soltau et al., 2017]: Word-level CTC targets, trained on 125,000 hours of speech. 

Performance close to or better than a conventional system, even without using an LM!
○ [Audhkhasi et al., 2017]: Direct Acoustics-to-Word Models on Switchboard

● And many others ...

CTC-Based ASR
Refinements since [Graves & Jaitly, 2014]



CTC produces “spiky” and sparse activations - 
can sometimes directly read off the final 
transcription from the activations even without 
an LM

CTC-Based End-to-End ASR

Reproduced from [Maas et al., 2015] NAACL



● For efficiency, CTC makes an important independence assumption - network outputs at 
different frames are conditionally independent

● Obtaining good performance from CTC models requires the use of an external language 
model - direct greedy decoding does not perform very well

Shortcomings of CTC
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Attention-based 
Encoder-Decoder Models



● Attention-based Encoder-Decoder Models 
emerged first in the context of neural 
machine translation.

● Were first applied to ASR by [Chan et al., 
2015] [Chorowski et al., 2015] [Chan et al., 2015]

[Chorowski et al., 2015]

Attention-based Encoder-Decoder Models



● Encoder (analogous to AM):
○ Transforms input speech into higher-level representation 

● Attention (alignment model):
○ Identifies encoded frames that are relevant to producing 

current output

● Decoder (analogous to PM, LM):
○ Operates autoregressively by predicting each output 

token as a function of the previous predictions

Attention-based Encoder-Decoder Models

Mei-Yuh Hwang
Typewritten Text
h_{u}^{att}



Attention-based Models

Reproduced from [Chan et al., 2015]



Attention-based Models

Reproduced from [Chan et al., 2015]



Attention module computes a 
similarity score between the decoder 

and each frame of the encoder 

Attention-based Models



Dot-Product Attention [Chan et al., 2015]

Additive Attention [Chorowski et al., 2015] 

Attention-based Models



Attention-based Models

Reproduced from [Chan et al., 2015]

Mei
Typewritten Text
=y1



Attention-based Models

Encoder

<sos> Decoder

Softmax

c

Attention

Encoder Output

Query Vector Attention 
Context

Attention Mechanism

Attention mechanism summarizes encoder 
features relevant to predict next label

Output: c

P(a|<sos>,x) = 0.01
P(b|<sos>,x) = 0.01
P(c|<sos>,x) = 0.92

...



Attention-based Models

Encoder

c Decoder

Softmax

c

Attention

Output: ca

P(a|c,<sos>,x) = 0.95
P(b|c,<sos>,x) = 0.01
P(c|c,<sos>,x) = 0.01

...

Labels from previous step are fed into 
decoder at the next step to predict



Attention-based Models

Encoder

a Decoder

Softmax

c

Attention

Output: cat

P(a|a,c,<sos>,x) = 0.01
P(b|a,c,<sos>,x) = 0.08

...
P(t|a,c,<sos>,x) = 0.89

...

Labels from previous step are fed into 
decoder at the next step to predict



Attention-based Models

Encoder

a Decoder

Softmax

c

Attention

Output: cat

P(a|t,a,c,<sos>,x) = 0.01
P(b|t,a,c,<sos>,x) = 0.01

...
P(<eos>|t,a,c,<sos>,x) = 0.96

...

Process terminates when the model predicts 
<eos> which denotes end of sentence.

Labels

Frames
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Online Models
RNN-T, NT, MoChA
To be discussed in the 2nd part of the tutorial



Model Comparisons
on a 12,500 hour Google Task



● Compare various 
sequence-to-sequence models 
head-to-head, trained on same 
data, to understand how these 
approaches compare to each 
other

● Evaluated on a large-scale 12,500 
hour Google Voice Search Task

[Prabhavalkar et al., 2017]

Comparing Various End-to-End Approaches



● Baseline
○ State-of-the-art CD-Phoneme model: 5x700 BLSTM; ~8000 CD-Phonemes
○ CTC-training followed by sMBR discriminative sequence training
○ Decoded with large 5-gram LM in first pass
○ Second pass rescoring with much larger 5-gram LM
○ Lexicon of millions of words of expert curated pronunciations

● Sequence-to-Sequence Models
○ Trained to output graphemes: [a-z], [0-9], <space>, and punctuation
○ Models are evaluated using beam search (Keep Top 15 Hyps at Each Step)
○ Models are not decoded or rescored with an external language model, or a 

pronunciation model

Experimental Setup
Model Configurations



● Training Set
○ ~15M Utterances (~12,500 hrs) of anonymized utterances from Google Voice Search 

Traffic
○ Multi-style Training: Artificially distorted using room simulator by adding noise 

samples extracted from YouTube videos and environmental recordings of daily 
events

● Evaluation Sets
○ Dictation: ~13K utterances (~124K words) open-ended dictation
○ VoiceSearch: ~12.9K utterances (~63K words) of voice-search queries

Experimental Setup
Data



Model
Clean

Dictation VoiceSearch

Baseline Uni. Context 
Dependent Phones (CDP) 6.4 9.9

Baseline BiDi. CDP 5.4 8.6

CTC-grapheme 39.4 53.4

Results

Decoding CTC-grapheme models without an LM performs poorly.Key Takeaway

Mei
Typewritten Text
uni-directional LSTM

Mei
Typewritten Text
bidirectional



Results

Model
Clean

Dictation VoiceSearch

Baseline Uni. CDP 6.4 9.9

Baseline BiDi. CDP 5.4 8.6

CTC-grapheme 39.4 53.4

Attention-based Model 6.6 11.7

Attention-based model performs the best, but cannot be used for streaming applicaitons.Key Takeaway



DeepSpeechSwitchboard

End-to-End Comparisons [Battenberg et al., 2017]

Similar conclusions were reported by [Battenberg et al., 2017] on Switchboard. RNN-T 
without an LM is consistently better than CTC with an LM.

Key Takeaway

Mei-Yuh Hwang
Highlight




● Various end-to-end approaches can be successfully combined to improve the overall 
system

● CTC and Attention-based models can be combined in a multi-task learning framework [Kim 
et al., 2017]

● RNN-T can be augmented with an attention module which can
○ condition the language model component on the acoustics [Prabhavalkar et al., 2017] 

or,
○ be used to bias the decoder towards particular items of interest [He et al., 2017]

● An attention model can be augmented with a secondary attention module which can bias 
towards an arbitrary number of phrases of interest [Pundak et al., 2018] (will be discussed 
in more detail in a few slides)

Combining Approaches

Mei-Yuh Hwang
Highlight




Further Improvements



● Structural improvements
○ Wordpiece models
○ Multi-headed attention

● Optimization improvements
○ Minimum word error rate (MWER) training
○ Scheduled sampling
○ Asynchronous and synchronous training
○ Label smoothing

● External language model integration

Improvements for productions
To match an end-to-end model to a strong conventional system:
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Structure improvements



● Instead of the commonly used grapheme, we can use longer units such as wordpieces
● Motivations:

○ Typically, word-level LMs have a much lower perplexity compared to grapheme-level 
LMs [Kannan et al., 2018]

○ Modeling wordpiece allows for a much stronger decoder LM
○ Modeling longer units improves the effective memory of the decoder LSTMs 
○ Allows the model to potentially memorize pronunciations for frequently occurring 

words
○ longer units require fewer decoding steps; this speeds up inference in these models 

significantly
● good performance for LAS and RNN-T [Rao et al., 2017].

Wordpiece Model



● sub-word units, ranging from graphemes all the way up to entire words.
● there are no out-of-vocabulary words with word piece models
● The word piece models are trained to maximize the language model likelihood over the 

training set
●  the word pieces are “position-dependent”, in that a special word separator marker is used 

to denote word boundaries.
● Words are segmented deterministically and independent of context, using a greedy 

algorithm.

Wordpiece Model



● Multi-head attention (MHA) was first explored in [Vaswani et al., 2017] for machine 
translation

● MHA extends the conventional attention mechanism to have multiple heads, where each 
head can generate a different attention distribution.

Multi-headed Attention



● Results

Multi-headed Attention
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Optimization improvements



● Attention-based Sequence-to-Sequence models are typically trained by optimizing cross 
entropy loss (i.e., maximizing log-likelihood of the training data)

● Training criterion does not match metric of interest: Word Error Rate 
●

Minimum Word Error Rate (MWER)



● In the context of conventional ASR system, for Neural Network Acoustic Models

■ State-level Minimum Bayes Risk (sMBR) [Kingsbury, 2009]
■ Word-level edit-based Minimum Bayes Risk (EMBR) [Shannon, 2017]

○ In the context of end-to-end models
■ Connectionist Temporal Classification (CTC) [Graves and Jaitly, 2014]
■ Recurrent Neural Aligner (RNA) [Sak et al., 2017]: Applies word-level EMBR to RNA
■ Machine Translation:

● REINFORCE [Ranzato et al., 2016]
● Beam Search Optimization [Wiseman and Rush, 2016]
● Actor-Critic [Bahdanau et al., 2017]

Minimum Word Error Rate (MWER)



Number of Word Errors 

Minimum Word Error Rate (MWER)

Minimizing expected WER directly is intractable since it involves a summation over all 
possible label sequences. Approximate expectation using samples.

Key Takeaway



Minimum Word Error Rate (MWER)

● Approximate expectation using samples [Shannon, 2017].

● Approximation using N-Best List [Stolcke et al., 1997][Povey, 2003] 



Model Uni-Directional 
Encoder

Bi-Directional 
Encoder

Baseline 8.1 7.2

+MWER Training 7.5 (7.4%) 6.9 (4.2%)

Minimum Word Error Rate (MWER)

● Results on Google's Voice Search



● Since [Prabhavalkar et al., 2018] we have repeated the experiments with MWER training on 
a number of models including RNN-T [Graves et al., 2013] and other streaming 
attention-based models such as MoChA [Chiu and Raffel, 2017] and the Neural Transducer 
[Jaitly et al., 2016]

● In all cases we have observed between 8% to 20% relative WER reduction
● Implementing MWER requires the ability to decode N-best hypotheses from the model 

which can be somewhat computationally expensive

Minimum Word Error Rate (MWER)

Mei-Yuh Hwang
Highlight




● Feeding the ground-truth label as the previous prediction (so-called teacher forcing) helps 
the decoder to learn quickly at the beginning, but introduces a mismatch between training 
and inference.

● The scheduled sampling process, on the other hand, samples from the probability 
distribution of the previous prediction (i.e., from the softmax output) and then uses the 
resulting token to feed as the previous token when predicting the next label

● This process helps reduce the gap between training and inference behavior. Our training 
process uses teacher forcing at the beginning of training steps, and as training proceeds, 
we linearly ramp up the probability of sampling from the model’s prediction to 0.4 at the 
specified step, which we then keep constant until the end of training

Scheduled Sampling

Mei-Yuh Hwang
Highlight




● synchronous training can potentially provide faster convergence rates and better model 
quality, but also requires more effort in order to stabilize network training.

● Both approaches have a high gradient variance at the beginning of the training when using 
multiple replicas

○ In asynchronous training we use replica ramp up: that is, the system will not start all 
training replicas at once, but instead start them gradually

○  In synchronous training we use two techniques: learning rate ramp up and a gradient 
norm tracker

Asynchronous and Synchronous Training



● a regularization mechanism to prevent the model from making over-confident predictions.
● It encourages the model to have higher entropy at its prediction, and therefore makes the 

model more adaptable
● We followed the same design as [Szegedy et al., 2016] by smoothing the ground-truth label 

distribution with a uniform distribution over all labels.

Label Smoothing

Mei-Yuh Hwang
Highlight


Mei-Yuh Hwang
Highlight




● Results

Optimization improvements

Mei
Typewritten Text
labelsmoothing

Mei
Typewritten Text
scheduledsampling
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External Language Model 



Reference LAS model output

What language is built into 
electrical circuitry of a 
computer?

what language is built into 
electrical circuit tree of a 
computer

Leona Lewis believe vienna lewis believe

Suns-Timberwolves score sun's timberwolves score

Motivation

Some Voice Search errors appear to be fixable with a good language model trained on more 
text-only data.

Key Takeaway



● The LAS model requires audio-text pairs: we have only 15M of these
● Our production LM is trained on billions of words of text-only data
● How can we look at incorporating a larger LM into our LAS model?
● More details can be found in [Kannan et al., 2018]

Motivation

https://arxiv.org/abs/1712.01996
Mei-Yuh Hwang
Highlight




• Listen, Attend and Spell [Chan et al., 2015]
• How to incorporate an LM?

• Shallow fusion [Kannan et al., 2018]
• LM is applied on output 

• Deep fusion [Gulcehre et al., 2015]
• Assumes LM is fixed

• Cold fusion [Sriram et al., 2018]
• Simple interface between a deep lm and the 

encoder 
• Allows to swap in task-specific LMs

• In these experiments, fusion is used during the beam 
search rather than n-best rescoring.

Shallow fusion

Deep/Cold fusion

LM

Extending LAS with an LM

https://cs.corp.google.com/piper///depot/google3/experimental/users/anjuli/papers/icassp2018/lm/main.pdf
https://arxiv.org/pdf/1503.03535.pdf
https://arxiv.org/pdf/1708.06426.pdf


● Log-linear interpolation between language model and seq2seq model:

● Typically only performed at inference time
● Language model is trained ahead of time and fixed
● LM can be either n-gram (FST) or RNN.
● Analogous to 1st pass rescoring.
● [Chorowski and Jaitly, 2017].  [Kannan et al., 2018].

Shallow Fusion

https://arxiv.org/abs/1612.02695
https://arxiv.org/abs/1712.01996


• Shallow Fusion still seems to perform the best
• Full comparison in [Toshniwal, 2018]

System Voice 
Search

Dictation

Baseline LAS 5.6 4.0

Shallow Fusion 5.3 3.7

Deep Fusion 5.5 4.1

Cold Fusion 5.3 3.9

Comparison of Fusion Results

https://arxiv.org/abs/1807.10857


Proprietary + ConfidentialProprietary + Confidential

State-of-the-art Performance 



Google's Voice Search Task

LAS achieves better performance than convention models.Key Takeaway



Librispeech

Yan et.al; Attention-based sequence-to-sequence model for speech recognition: development of state-of-the-art system on LibriSpeech and its application to non-native English
Kazuki et.al; MODEL UNIT EXPLORATION FOR SEQUENCE-TO-SEQUENCE SPEECH RECOGNITION

Similar observations have been reported by other groups.Key Takeaway



Online Models
RNN-T, NT, MoChA



Streaming Speech Recognition

Recognize the audio

Finalize recognition &
Taking action / fetching the search results



Streaming Speech Recognition

Recognize the audio

Endpoint quickly

Finalize recognition &
Taking action / fetching the search results



Streaming Speech Recognition

Recognize the audio

Important implications for embedded applications:

● Reliability
● Latency
● Privacy



Online Models

• LAS is not streaming
• We will show a thorough comparison of different online models

• RNN-T [Graves, 2012], [Rao et al., 2017], [He et al., 2018]
• Neural Transducer [Jaitly et al., 2015], [Sainath et al., 2018]
• MoChA [Chiu and Raffel, 2018]

https://arxiv.org/pdf/1211.3711.pdf
https://arxiv.org/abs/1801.00841
https://arxiv.org/abs/1811.06621
https://arxiv.org/abs/1511.04868
https://arxiv.org/abs/1712.01807
https://arxiv.org/abs/1712.05382


Recurrent Neural Network Transducer



Recurrent Neural Network Transducer (RNN-T)

• Proposed by Graves et al., 
RNN-T augments a 
CTC-based model with a 
recurrent LM component

• Both components are 
trained jointly on the 
available acoustic data

• As with CTC, the method 
does not require aligned 
training data.

[Graves et al., 2013] ICASSP; 
[Graves, 2012] ICML Representation Learning Workshop



Recurrent Neural Network Transducer (RNN-T)

RNN-T [Graves, 2012] augments CTC encoder with a recurrent neural network LM



Recurrent Neural Network Transducer (RNN-T)

Prediction 
Network

<SOS>

Encoder

t=1 frame

Joint 
Network

Softmax n+1

<blank>

Output: 

Softmax over n + 1 labels, includes a 

blank like CTC.

<blank> → advance in Encoder, retain 

prediction network state



Recurrent Neural Network Transducer (RNN-T)

Prediction 
Network

<SOS>

Encoder

t=2 frame

Joint 
Network

Softmax n+1

<blank>

Output: 

Softmax over n + 1 labels, includes a 

blank like CTC.

<blank> → advance in Encoder, retain 

prediction network state



Recurrent Neural Network Transducer (RNN-T)

Prediction 
Network

<SOS>

Encoder

t=3 frame

Joint 
Network

Softmax n+1

g

Output: g

Softmax over n + 1 labels, includes a 

blank like CTC.

<blank> → advance in Encoder, retain 

prediction network state



Recurrent Neural Network Transducer (RNN-T)

Prediction 
Network

g

Encoder

t=3 frame

Joint 
Network

Softmax n+1

o

Output: go

Softmax over n + 1 labels, includes a 

blank like CTC.

<blank> → advance in Encoder, retain 

prediction network state



Recurrent Neural Network Transducer (RNN-T)

Prediction 
Network

o

Encoder

t=3 frame

Joint 
Network

Softmax n+1

o

Output: goo

Softmax over n + 1 labels, includes a 

blank like CTC.

<blank> → advance in Encoder, retain 

prediction network state



Recurrent Neural Network Transducer (RNN-T)

Prediction 
Network

e

Encoder

t=T frame

Joint 
Network

Softmax n+1

<blank>

Output: google

Inference terminates when all input 

frames have been consumed



Recurrent Neural Network Transducer (RNN-T)

Prediction 
Network

u - 1

Encoder

t

Joint 
Network

Softmax n+1

t, u During training feed the true label sequence to 
the LM.

Given a target sequence of length U and T 
acoustic frames we generate UxT softmax

1 2 3 4 5

c

a

t

Frames, t

<SOS>



Recurrent Neural Network Transducer (RNN-T)

Reproduced from [Graves, 2012] ICML Representation Learning Workshop



Recurrent Neural Network Transducer (RNN-T)

[Graves et al., 2013] showed promising results on TIMIT phoneme recognition, but the work did not seem to 
get as much traction in the field as CTC.

Reproduced from [Graves, 2013] ICASSP



Recurrent Neural Network Transducer (RNN-T)

• Intuitively, the prediction network corresponds to the “language model” component and the encoder 
corresponds to the “acoustic model” component

• Both components can be initialized from a separately trained CTC-AM and a RNN-LM (which can 
be trained on text only data) 

• Initialization provides some gains [Rao et al., 2017] but is not critical to get good performance

• Generally speaking, RNN-T always seems to perform better than CTC alone in our experiments (even 
when decoded with a separate LM)

• More on this in a bit when we compare various approaches on a voice search task.



RNN-T: Case Study on ~18,000 hour Google Data

Reproduced from 
[Rao et al., 2017] ASRU

RNN-T components can be initialized separately from (hierarchical) CTC-trained AM, 
and recurrent LM. Initialization generally improves performance. 



RNN-T: Case Study on ~18,000 hour Google Data

• If graphemes are used as output units, then the model has limited language modeling context: e.g. 
errors: “the tortoise and the hair”

• Using words as output targets would allow modeling additional context, but would introduce OOVs

• Intermediate: Use “word pieces” [Schuster & Nakajima, 2012]
• Iteratively learn a vocabulary of units from text data.
• Start with single graphemes, and train an LM from the data. 
• Iteratively combine units in a greedy manner which improve training perplexity
• Continue to combine units until reaching a predefined number of units or perplexity improvements 

are below a threshold
• E.g., “tortoise and the hare” → _tor to ise _and _the _hare



RNN-T: Case Study on ~18,000 hour Google Data

Initializing the “encoder” (i.e., acoustic model) 
helps improve performance by ~5%.



RNN-T: Case Study on ~18,000 hour Google Data

Initializing the “decoder” (i.e., prediction network, language model) 
helps improve performance by ~5%.



RNN-T: Case Study on ~18,000 hour Google Data

The RNN-T model with ~96M parameters can match the performance of a 
conventional sequence-trained CD-phone based CTC model with a large first pass LM
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Further Improvements



Improved Architecture

• Recurrent projection layer [Sak et al., 2014]
• Introduced after each LSTM layer in both the encoder and decoder.
• Improves accuracy with more compact representation.

• Layer normalization [Ba et al., 2016]
• Applied to all layers.
• Stabilizes hidden state dynamics of the recurrent layers.
• Improves accuracy.



Forward-Backward Algorithm for Training

/b/

/a/

time

la
be

ls



Efficient Forward-Backward in TPU

/b/

/a/

time

la
be

ls

• Main idea: shift the matrix 
to do pipelining (so that 
each column only depends 
on the previous column but 
not itself).

This allows us to train faster in TPUs with much larger batch sizes than would be 
possible using GPUs, which improves accuracy.

Native TF support for 
efficient batched 
forward-backward 
computation.
[Sim et al., 2017]



Comparisons of Streaming Models for Mobile Devices

More details: [He et al., 2018]

● Inputs:
○ Each 10ms frame feature: 80-dimensional log-Mel.
○ Every 3 frames are stacked as the input to the networks, so the effective frame rate is 30ms.

● RNN-T:
○ 8-layer encoder, 2048 unidirectional LSTM cells + 640 projection units.
○ 2-layer prediction network, 2048 unidirectional LSTM cells + 640 projection units.
○ Model output units: grapheme or word-piece.
○ Total system size: ~120MB after quantization (more on this in a later slide).

● A competitive CTC baseline model for embedded speech recognition:
○ Similar to [McGraw et al., 2016], but with bigger models.
○ 6 layers, 1200 unidirectional LSTM cells + 400 projection units. sMBR sequence-trained.
○ Model output units: CI phones.
○ With a 5-gram first-pass LM, and a second-pass rescoring LSTM LM.
○ Total system size: ~130MB after quantization.

https://arxiv.org/abs/1811.06621
Mei-Yuh Hwang
Highlight


Mei-Yuh Hwang
Highlight




Quality Improvements

Model VS WER IME WER
RNN-T Grapheme 8.1% 4.9%

+ Layer Norm 7.6% 4.6%
+ Large Batch 7.5% 4.4%
+ Word-piece 6.8% 4.0%

CTC 9.3% 5.3%

With all the optimizations, a streaming RNN-T model improves WER by more than 
20% over a conventional CTC embedded model + word LMs.

Mei-Yuh Hwang
Highlight
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Real-Time Recognition



• Time reduction layer [Chan et al., 2015, Soltau et al., 2017]
• Reduces the sequence length in the encoder by concatenation.
• Speeds up training and inference.
• Inserted after two encoder LSTM layers to maximize

computation saving without hurting accuracy.
• Input frame rate 30ms, output frame rate 60ms: no accuracy

loss in RNN-T grapheme and wordpiece models, but hurts a
CTC phoneme model.

Time Reduction Layer

Mei-Yuh Hwang
Highlight




More Inference Optimization

• Prediction network state caching
• The prediction network computation is independent of the acoustics.
• Analogous to an RNN language model.
• Apply the same state caching technique used in RNN LM in order to avoid redundant computation 

for identical prediction histories.
• In practice, 50–60% of the prediction network computations are cached during beam search, with 

different beam sizes.

• Encoder / prediction network multithreading
• Encoder splits over two threads: before and after time-reduction layer.
• Prediction network runs in a separate thread.
• Enables pipelining among different threads through asynchrony.
• Results in a speed-up of 28% with respect to a single-threaded execution.



Parameter Quantization

• Quantizes parameters from 32-bit floating-point precision into 8-bit fixed-point.
• Reduces model size by 4x.

• Symmetric quantization
• Assumes that parameter values are distributed around floating point zero for quantization.
• Directly uses the quantized vector/matrix for multiplication without offset, which is more efficient 

compared to asymmetric quantization with offset.
• 3x speedup compared to floating point execution.



Comparisons of Streaming Models for Mobile Devices (cont’d)

Real Time (RT) Factor (processing time divided by audio duration) is measured on a Google Pixel Phone.
RT90: Real time factor at 90 percentile. Lower is better.

Model Weight 
Storage Type Size Output

Frame Rate
VS 

WER
IME 

WER RT90

RNN-T Grapheme Float 468MB 30ms 7.4% 4.5% 2.71
+ Time Reduction Layer Float 468MB 60ms 7.5% 4.4% 1.58

+ Word-piece Float 480MB 60ms 7.0% 4.1% 1.43
+ Asymmetric Quantization Int 120MB 60ms 7.1% 4.2% 1.03
+ Symmetric Quantization Int 120MB 60ms 7.3% 4.2% 0.51

CTC + Symmetric Quantization Int 130MB 30ms 9.2% 5.4% 0.86

RNN-T decodes speech twice as fast as real time on a Google Pixel phone, which 
improves WER by more than 20% relative to a conventional CTC embedded model.



Neural Transducer



Neural Transducer: “Online” Attention Models
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Neural Transducer: “Online” Attention Models
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Neural Transducer: “Online” Attention Models

Encoder

Chunk

Decoder i

Attention Mechanism

n

Chunk



Training Data for Neural Transducer

• Online methods like RNN-T, Policy Gradient learn alignment jointly with model
• We train neural transducer with a pre-specified alignment, so don’t need to re-compute alignments 

(e.g., forward-backward) during training, which slows things down on GPU/TPU.

hello how are youWord 
Alignment



Training Data for Neural Transducer

• <epsilon> signals end-of-chunk
• Since we don’t have grapheme-level alignments, we wait till the end of the word to emit the entire 

word’s graphemes

hello how are youWord 
Alignment

<epsilon> how are <epsilon> you <epsilon>
hello <epsilon> <epsilon> <epsilon>



Neural Transducer Attention Plot

NT model examines previous frames without looking beyond the current chunk

Unidirectional LAS with
 Multi-Headed Attention

Neural Transducer Attention



Monotonic Chunkwise Attention



Monotonic Attention









MoChA





Monotonic Chunkwise Attention (MoChA)

Soft attention Hard monotonic attention Monotonic chunkwise attention

[Chiu and Raffel, 2018]



Training Monotonic Chunkwise Attention

• Compute expected probability of hard attention
• The expected probability distribution provides a soft attention
• Same training procedure as LAS

Train Inference



Online Model Comparison

Model

Clean

Voice 
Search Dictation

LAS 5.7 4.1

RNN-T 6.8 4.0

MoChA 5.8 4.2

NT 8.7 7.8



Summary

• Explored multiple alternatives of online end-to-end models.

Achieving streaming recognition at a small cost of 
accuracy over LAS.

• Investigated RNN-T in depth as one promising choice.

Substantial accuracy and efficiency improvement over a 
conventional CTC embedded model with similar size.



Toward product excellence 

Personalization

Fast endpointing 

Multi-dialect ASR



Personalization



“Bias” the priors to the speech models based 
on personal information



• Contacts - “call Joe Doe, send a message to Jason Dean”
• Songs - “play Lady Gaga, play songs from Jason Mraz”
• Dialog- “yes, no, stop, cancel”



Why Important

• Biasing can improve WER in domains by more than 10% relative

Test Set WER, No Biasing WER, Biasing

Contacts 15.0 2.8

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43819.pdf


● Paper reference [Pundak et al., 2018]
● Test sets

○ Songs - “play Lady Gaga, play songs from Jason Mraz”

https://arxiv.org/abs/1808.02480


• Directly model P(y|x, z)
• z: bias-phase e.g. contact name/song 

list
• Goal: bias the model towards 

outputting particular phrases
• Predict </bias>: the model has to 

attend to the correct bias phrase

Decoder

Biaser Encoder

the grey chicken</bias> jumps 

B1 = grey chicken
B2 = blue dog

Audio Encoder

SiSi



• Example ref:  The grey chicken jumps over the lazy dog
• Sample uniformly a bias phrase b, e.g. grey chicken 
• With drop-probability p (e.g. 0.5) drop the selected phrase
• Augment with additional N-1 more bias phrases from other references in the batch

• quick turtle
• grey chicken
• brave monkey

• If b was not dropped, insert a </bias> token to reference:
• The grey chicken</bias> jumps over the lazy dog



LSTM

D

LSTM

O

LSTM

G

h_1 

● The Biaser embeds each phrase into a fixed length vector
○ → Last state of an LSTM

● Embedding happens once per bias phrase (possibly offline)
○ Cheap computation

● Attention is then computed over the set of embeddings

h_2 h_3 

bi

N/A 



CLAS

Weights for 
each phrase





• CLAS is better than biasing with extern LM
• CLAS model + external LM works best 

Method Songs

LAS No Biasing 20.9

LAS + external LM 13.4

CLAS 6.9

CLAS + external LM 5.7



Endpointer



“Determine when the user has finished 
speaking: fast and accurate ASR”



Confidential & Proprietary

Streaming speech recognition

Recognize the audio

Endpoint quickly

Finalize recognition
Fetching the search results
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Why is it hard?
1. Latency vs WER tradeoff

LATENCY



Confidential & Proprietary

Why is it hard?
1. Latency vs WER tradeoff

LATENCY

2. Noisy conditions
...



Endpointer: Latency and WER Impact

EP50 (ms)

W
ER

 (%
)

CTC-AM

RNNT

WER vs median latency

Median latency (ms)

10% WER 
vs 100 ms 
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VAD vs end-of-query detection

PrefetchEvent RecEvent
PrefetchEvent

EOS EOS
EOU

SOSSOS

SOS = start of speech
EOS = end of speech
EOU = end of utterance

VAD: detect speech vs non-speech

VAD and end-of-query detector (user finished speaking) are different



Confidential & Proprietary

Training a Voice Activity Detector
● Take an utterance with ground-truth transcription
● Use forced alignment to find the timing of the utterance
● Based on the timing mark each frame as SPEECH (0) or NON-SPEECH (1)

Driving time to San Francisco

1 1 1 1 10 0 0 0
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End-of-query detector
● Labels:

○ Speech (0)
○ intermediate non-speech (1) - between words
○ Initial non-speech (2)
○ Final non-speech (end-of-query) (3)

Driving time to San Francisco

2 1 1 1 30 0 0 0

*Improved end-of-query detection for streaming speech recognition 
M. Shannon, G. Simko, S. Chang, and C. Parada Interspeech 2017
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EOQ vs VAD
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Endpointer Models

● LSTM based models 
[Chang et al., 2017]

○ Conv/Grid LSTM
○ Bottleneck layer 
○ 2 lstm layers 
○ 1 dnn layer 
○ 1 softmax output layer

● Dilated CNN (WaveNet) 
[Chang et al., 2018]

○ temporal modeling with 
CNN

DNN

LSTM

f-Conv

LSTM

p(speech), p(init sil), p(inter sil), p(final sil)  

log Mel 
features

 CLDNN

DNN

LSTM

Grid 
LSTM

LSTM

log Mel 
features

GLDNN

DNN DNN

dilated
t-conv

Dilated CNN

dilated
t-conv

dilated
t-conv

.

.

.

.

log Mel 
features

DNN

https://www.isca-speech.org/archive/Interspeech_2017/pdfs/0284.PDF
https://ieeexplore.ieee.org/abstract/document/8461921
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Summary
● VAD to EOQ: ~150 ms improvement
● Models: ~100 ms improvement
● More than acoustic information: E2E endpointer 



Multi-Dialect ASR



Dialects

● British English (en-gb) vs American English (en-us)
○ Acoustic variation: 

■ Cut: (en-gb): /kʌt/ (en-us): /kʌ/
■ Work: (en-gb) /wɜːk/,(en-us): /wɝrk/  

○ Spelling variation: 
■ (en-gb): centre, (en-us): center
■ (en-gb): colour, (en-us): color



E2E multi-dialect ASR

Decoding Rescoring

AM PM LM

en
-u

s

AM PM LM

en
-g

b

…
In conventional systems, languages/dialects,

are handled with individual AMs, PMs and LMs.
Upscaling is becoming challenging. 

Decoding

Seq2Seq

A single model for all.

Decoding Rescoring

AM PM

LM

en
-u

s

LM

…

en
-g

b

Conventional Systems Conventional Co-training. Seq2Seq



Multi-Dialect LAS

● Modeling Simplicity
● Data Sharing 

○ among dialects and model components 

● Joint Optimization
● Infrastructure Simplification

○ a single model for all

Conventional Seq2Seq

data

data
phoneme
lexicon

text normalization
LM

⨉ N

Table: Resources required for building each system.



Motivations

● We share the same interest:
○ S. Watanabe, T. Hori, J.R. Hershey; Language independent end-to-end architecture for 

joint language identification and speech recognition; ASRU 2017. MERL, USA.
■ English, Japanese, Mandarin, German, Spanish, French, Italian, Dutch, Portuguese, 

Russian.
○ S. Kim, M.L. Seltzer; Towards language-universal end-to-end speech recognition; 

submitted to ICASSP 2018. Microsoft, USA.
■ English, German, Spanish.



Dialect as Output Targets

● Multi-Task Learning: Joint Language ID (LID) and ASR
○ LID first, then ASR

■ "<sos> <en-gb> h e l l o ப w o r l d <eos>"

■ LID errors may affect ASR performance 

○ ASR first, then LID
■ "<sos> h e l l o ப w o r l d <en-gb> <eos>"

■ ASR prediction is not dependent on LID prediction, not suffering from LID errors



Dialect as Input Features

● Passing the dialect information 
as additional features

LSTM

LSTM

LSTM

LSTM

LSTM

input

dialect

Encoder

LSTM

LSTM

A
tte

nt
io

n

<sos> h e l l o w o r l d <eos>

[previous context vector, 
 previous label prediction]

Decoder

components variations 

encoders → acoustic

decoders → lexicon and 
language



Experimental Evaluations



Task

★ unbalanced dialect data ★ unbalanced target classes

● 7 English dialects: US (America), IN (India), GB (Britain), ZA (South Africa), AU 
(Australia), NG (Nigeria & Ghana), KE (Kenya)



LAS Co-training Baselines

Dialect US IN GB ZA AU NG KE
dialect-ind. 10.6 18.3 12.9 12.7 12.8 33.4 19.2
dialect-dep. 9.7 16.2 12.7 11.0 12.1 33.4 19.0

★ dialect specific fine-tuning still wins

★ simply pooling the data is missing certain dialect specific variations



LAS With Dialect as Output Targets

Example target sequence  

LID first <sos> <en-gb> h e l l o ப w o r l d <eos>

ASR first <sos> h e l l o ப w o r l d <en-gb> <eos>

Dialect US IN GB ZA AU NG KE
Baseline 

(dialect-dep.) 9.7 16.2 12.7 11.0 12.1 33.4 19.0

LID first 9.9 16.6 12.3 11.6 12.2 33.6 18.7
ASR first 9.4 16.5 11.6 11.0 11.9 32.0 17.9

★ LID error affects ASR  
  
★ ASR first is better



LAS With Dialect as Input Features

Dialect US IN GB ZA AU NG KE
Baseline 

(dialect-dep.) 9.7 16.2 12.7 11.0 12.1 33.4 19.0

encoder 9.6 16.4 11.8 10.6 10.7 31.6 18.1
decoder 9.4 16.2 11.3 10.8 10.9 32.8 18.0

both 9.1 15.7 11.5 10.0 10.1 31.3 17.4

★ feeding dialect to both encoder and decoder gives the largest gains



LAS With Dialect as Input Features

★ encoder is more sensitive to wrong dialects → large acoustic variations

★ for low-resource dialects (NG, KE), the model learns to ignore the dialect information

Feeding different dialect vectors (rows) on different test sets (columns).

Test set

di
al

ec
t f

ea
tu

re



LAS With Dialect as Input Features

● The dialect vector does both AM and LM adaptation

★ dialect vector helps encoder to normalize accent variations

★ dialect vector helps decoder to learn dialect-specific lexicons

dialect vector encoder decoder
color 
(US)

colour 
(GB) 

❌ ❌ ❌ 1 22

<en-gb>: [0, 1, 0, 0, 0, 0, 0] ✓ ❌ 19 4

<en-gb>: [0, 1, 0, 0, 0, 0, 0] ❌ ✓ 0 25

<en-us>: [1, 0, 0, 0, 0, 0, 0] ❌ ✓ 24 0

Table: The number of color/colour occurrences in hypotheses on the en-gb test data.



Final Multi-Dialect LAS 

○ output targets:
■ multi-task with ASR 

first
○ input features: 

■ feeding dialect to 
both encoder and 
decoder

LSTM

LSTM

LSTM

LSTM

LSTM

input

dialect

Encoder

LSTM

LSTM

A
tte

nt
io

n

<sos> h e l l o w o r l d <en-gb> <eos>

[previous context vector, 
 previous label prediction]

Decoder



Final Multi-Dialect LAS 

Dialect US IN GB ZA AU NG KE
Baseline 

(dialect-dep.) 9.7 16.2 12.7 11.0 12.1 33.4 19.0

output targets 
(ASR first) 9.4 16.5 11.6 11.0 11.9 32.0 17.9

input features 
(both) 9.1 15.7 11.5 10.0 10.1 31.3 17.4

final 9.1 16.0 11.4 9.9 10.3 31.4 17.5

★ small gains when combining input and output

★ the final system outperforms the dialect-dependent models by 3.1~16.5% relatively
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Summary
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Attention Online Models Production

● Attention-based end-to-end 
model achieves state-of-the-art 
performance on Google's Voice 
Search and Librispeech tasks.

○ wordpiece output targets
○ multihead attention
○ MWER optimization
○ synchronous training 
○ scheduled sampling
○ label smoothing

● Recurrent Neural Network 
Transducer (RNNT)

● Neural Transducer (NT)
● Monotonic Chunkwise 

Attention (MoChA) 

● Personalization (Biasing)
● Endpointer
● Multi-dialect/lingual 
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Open Questions

Question 1 Question 2

How to handle long-tail problems?
Rare words/phrases, numeric entities etc 
have very low or no appearance in the 
training data. How can we make the 
end-to-end model recognize them 
correctly? 

Can we push the "end" further?
Can end-to-end model be built to directly 
transform speech to semantics, intents or 
actions?



Speech 
Recognition

State-of-the-art Speech 
Recognition With 

Sequence-to-Sequence Models.  

... ...

Machine 
Translation

Google's Neural Machine 
Translation System: Bridging the 

Gap between Human and Machine 

Translation.
... ...

Speech 
Synthesis

Hierarchical Generative Modeling 
for Controllable Speech Synthesis.

... ...

Language 
Understanding

Semi-Supervised Learning for 
Information Extraction from 

Dialogue.

... ...

Source:  https://github.com/tensorflow/lingvo

Lingvo (tensorflow/lingvo)

A toolkit suited to build neural networks, particularly sequence models.

https://arxiv.org/abs/1712.01769
https://arxiv.org/abs/1712.01769
https://arxiv.org/abs/1712.01769
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1810.07217
https://arxiv.org/abs/1810.07217
https://www.isca-speech.org/archive/Interspeech_2018/abstracts/1318.html
https://www.isca-speech.org/archive/Interspeech_2018/abstracts/1318.html
https://www.isca-speech.org/archive/Interspeech_2018/abstracts/1318.html
https://github.com/tensorflow/lingvo
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